Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Nematol ; 55(1): 20230005, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36880013

RESUMEN

Root-knot nematodes (RKNs) have been shown to be challenging and persistent pests of economic crops worldwide. Among RKNs, Meloidogyne javanica is particularly important, as it rapidly spreads and has a diverse host range. Measuring its damaging threshold level will help us to develop management strategies for adequate plant protection against nematodes. In our study, we observed the relationship between a linear series of 12 initial population densities (Pi) of M. javanica, i.e., 0, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, and 128 second-staged juveniles (J2s) g-1 soil, and fenugreek cv. UM202 growth parameters were investigated using a Seinhorst model. A Seinhorst model was fitted to shoot length and dry weight data for fenugreek plants. A positive correlation was found between J2s inoculum levels and percent reductions in growth parameters. The 1.3 J2s of M. javanica g-1 soil were found to damage threshold levels with respect to shoot length and shoot dry weight of fenugreek plants. The minimum relative values (m) for shoot length and shoot dry weight were 0.15 and 0.17, respectively, at Pi =128 J2s g-1 soil. The maximum nematode reproduction rate (Pf /Pi) was 31.6 at an initial population density (Pi) of 2 J2s g-1 soil.

2.
Methods Mol Biol ; 2575: 77-103, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36301472

RESUMEN

The molecular map of diverse biological molecules linked with structure, function, signaling, and regulation within a cell can be elucidated using an analytically demanding omic approach. The latest trend of using "metabolomics" technologies has explained the natural phenomenon of opening a new avenue to understand and enhance bioactive compounds' production. Examination of sequenced plant genomes has revealed that a considerable portion of these encodes genes of secondary metabolism. In addition to genetic and molecular tools developed in the current era, the ever-increasing knowledge about plant metabolism's biochemistry has initiated an approach for wisely designed, more productive genetic engineering of plant secondary metabolism for improved defense systems and enhanced biosynthesis of beneficial metabolites. Secondary plant metabolites are natural products synthesized by plants that are not directly involved with their average growth and development but play a vital role in plant defense mechanisms. Plant secondary metabolites are classified into four major classes: terpenoids, phenolic compounds, alkaloids, and sulfur-containing compounds. More than 200,000 secondary metabolites are synthesized by plants having a unique and complex structure. Secondary plant metabolites are well characterized and quantified by omics approaches and therefore used by humans in different sectors such as agriculture, pharmaceuticals, chemical industries, and biofuel. The aim is to establish metabolomics as a comprehensive and dynamic model of diverse biological molecules for biomarkers and drug discovery. In this chapter, we aim to illustrate the role of metabolomic technology, precisely liquid chromatography-mass spectrometry, capillary electrophoresis mass spectrometry, gas chromatography-mass spectrometry, and nuclear magnetic resonance spectroscopy, specifically as a research tool in the production and identification of novel bioactive compounds for drug discovery and to obtain a unified insight of secondary metabolism in plants.


Asunto(s)
Metabolómica , Plantas , Humanos , Espectrometría de Masas/métodos , Metabolómica/métodos , Plantas/metabolismo , Cromatografía Liquida , Descubrimiento de Drogas
3.
Sci Rep ; 12(1): 14023, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35982131

RESUMEN

The sol-gel technique was used to fabricate ZnO Nano-swirlings (ZNsw) at a predetermined agitation rate (of >> 1900 rpm), with around 21.94 gm of zinc acetate dihydrate and 0.2 g cetyltrimethylammoniumbromide (CTAB) and a cationic surfactant (drop-wise). The impact of the predetermined agitation condition on the molecular size and morphology of ZNsw is examined, and the outcomes are dissected by useful characterization tools and techniques viz. XRD, SEM embedded with EDS, TEM, FT-IR and UV-visible. The SEM and TEM results suggest that the product formed into a big cluster of adequate ZNsw, containing a significant quantity of folded long thread-lengths. Each group indicated a fair amount of the volume of these lengths. The photocatalytic process of ZNsw was carried out as a result of the irradiation time due to the deterioration of Azo Dye AR183, resulting in approximately 79 percent dye discoloration following an 80-min UV light irradiation in the presence of ZNsw. Additionally, the synthesized ZNsw was tested for antagonistic activity, and the growth hindrance of two plant pathogenic fungal strains found. Per cent inhibition in growth of Rhizoctonia solani and Alternaria alternata were observed in response to ZNsw.


Asunto(s)
Óxido de Zinc , Compuestos Azo , Catálisis , Espectroscopía Infrarroja por Transformada de Fourier , Rayos Ultravioleta , Óxido de Zinc/farmacología
4.
J Zhejiang Univ Sci B ; 22(7): 563-574, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34269009

RESUMEN

This study focused, for the first time, on the effect of ultrasonic features on the extraction efficiency of secondary metabolites in mustard seed cake (MSC). The nematostatic potential of sonicated seed cake was examined against the second-stage juveniles (J2s) of root-knot nematode, Meloidogyne javanica. The results show that a 35 ppm (parts per million) concentration of a sonicated extract (SE) sample of MSC caused 65% J2s mortality at 18 h exposure period in vitro. It also significantly suppressed the root-knot index (RKI=0.94) in tomato roots. The lethal concentration values for SE were 51.76, 29.79, and 13.34 ppm, respectively, at 6, 12, and 18 h of the exposure period, and the lethal concentration values for the non-sonicated extract (NSE) sample were 116.95, 76.38, and 55.59 ppm, respectively, at similar exposure time. Sinapine and gluconapin were identified as the major compounds in ultrasonic-assisted MSC. Because of the high extraction efficiency of metabolites in the SE, all treatments of SE were shown to be antagonistic to J2s. Thus, this study of ultrasonication activity-based profiling of MSC may help generate target-based compounds at a scale relevant to the control of disease caused by nematodes in economic crops.


Asunto(s)
Colina/análogos & derivados , Productos Agrícolas , Glucosinolatos/análisis , Planta de la Mostaza/metabolismo , Raíces de Plantas/metabolismo , Semillas/metabolismo , Tylenchoidea/fisiología , Animales , Colina/análisis , Cromatografía Liquida , Solanum lycopersicum/metabolismo , Solanum lycopersicum/parasitología , Microscopía Electrónica de Rastreo , Raíces de Plantas/parasitología , Semillas/química , Solventes , Sonicación , Espectrometría de Masa por Ionización de Electrospray , Ultrasonido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA