Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Cell Biomech ; 5(1): 69-81, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18524247

RESUMEN

Endothelial cells subjected to cyclic stretching change orientation so as to be aligned perpendicular to the direction of applied strain in a magnitude and time-dependent manner. Although this type of response is not the same as motility, it could be governed by motility-related factors such as substratum adhesiveness and actin-myosin contractile level. To examine this possibility, human aortic endothelial cells (HAEC) were uniaxially, cyclically stretched on silicone rubber membranes coated with various concentrations of fibronectin, collagen type IV and laminin to produce differing amounts of adhesiveness (measured using a radial flow detachment assay). Cells were subjected to 10% pure cyclic uniaxial stretching for three hours at a rate of 10%/sec. Time-lapse images revealed that cells underwent large morphological changes without moving. For each type of protein there was a parabolic dependence on initial adhesiveness with optimal cell orientation occurring at very similar adhesive strengths. The effect of actin-myosin contractile level was examined by stretching cells treated with different doses of 2,3-butanedione monoxime (BDM) and Blebbistatin. Each drug induced a dose-dependent decrease in orientation angles after three hours of cyclic stretching. Furthermore, cell and stress fiber orientations were tightly coupled for untreated and Blebbistatin-treated cells but were uncoupled for BDM-treated cells. Even though orientation response to cyclic stretching is not a spontaneous motile response, it is determined, in large part, by the same factors that affect spontaneous motility--the cell-substratum adhesiveness and actin-myosin contractile level.


Asunto(s)
Actinas/metabolismo , Polaridad Celular , Células Endoteliales/citología , Miosinas/metabolismo , Adhesividad , Fenómenos Biomecánicos , Adhesión Celular , Células Cultivadas , Proteínas de la Matriz Extracelular/metabolismo , Humanos , Modelos Biológicos , Fibras de Estrés/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA