Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Chem ; 94(25): 8867-8873, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35699939

RESUMEN

Nanomaterial-based biosensors are a promising fit for portable and field-deployable diagnosis sensor devices due to their mass production, miniaturization, and integration capabilities. However, the fabrication of highly stable and reproducible biosensor devices is challenging. In this work, we grow a vertically oriented architecture of zinc oxide nanorods onto the active working area (i.e., the channel between the source and drain) of a field-effect transistor (FET) using a low-temperature hydrothermal method. The glucose oxidase enzyme was immobilized on the zinc oxide nanorod surface by a physical adsorption method to fabricate the electrolyte-gated FET-based glucose biosensor. The electrical properties of the electrolyte-gated FET biosensor were measured with different glucose concentrations. We found a linear increase in current up to 80 mM glucose concentration with high sensitivity (74.78 µA/mMcm2) and a low detection limit (∼0.05 mM). We illustrate a highly reproducible fabrication process of zinc oxide nanorod-based FETs, where vertically grown nanorods with a higher surface-to-volume ratio enhance the enzyme immobilization, provide a microenvironment for longer enzyme activity, and translate to better glucose sensing parameters. Additionally, our electrolyte-gated FET biosensor showed promising application in freshly drawn mouse blood samples. These findings suggest a great opportunity to translate into practical high-performance biosensors for a broad range of analytes.


Asunto(s)
Técnicas Biosensibles , Nanotubos , Óxido de Zinc , Animales , Técnicas Biosensibles/métodos , Electrólitos , Glucosa , Ratones
2.
Heliyon ; 10(18): e37847, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39315144

RESUMEN

Developing highly sensitive and selective non-enzymatic electrochemical biosensors for disease biomarker detection has become challenging in healthcare applications. However, advances in material science are opening new avenues for creating more dependable biosensing technologies. In this context, the present work introduces a novel approach by engineering a hybrid structure of zinc oxide nanorod (ZnO NR) modified with iron oxide nanoparticle (Fe2O3 NP) on an FTO electrode. This Fe2O3 NP-ZnO NR hybrid material functions as a nanozyme, facilitating the catalysis of cholesterol and enabling the direct transfer of electrons to the fluorine-doped tin oxide (FTO) electrode, limiting the need for costly and traditional enzymes in the detection process. This innovative non-enzymatic cholesterol biosensor showcases remarkable sensitivity, registering at 642.8 µA/mMcm2 within a linear response range of up to 9.0 mM. It also exhibits a low detection limit (LOD) of ∼12.4 µM, ensuring its capability to detect minimal concentrations of cholesterol accurately. Moreover, the developed biosensor displays exceptional selectivity by effectively distinguishing cholesterol molecules from other interfering biological species, while exhibiting outstanding stability and reproducibility. Our findings indicate that the Fe2O3 NP-ZnO NR hybrid nanostructure on the FTO electrode holds promise for enhancing biosensor stability. Furthermore, the present device fabrication platform offers versatility, as it can be adapted with various enzymes or modified with different metal oxides, potentially broadening its applicability in a wide range of biomarkers detection.

3.
J Phys Chem Lett ; 14(4): 888-896, 2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36662270

RESUMEN

Herein, we report temperature- and field-induced magnetic states in CsPbBr3 perovskite quantum dots (PQDs) attributed to Br defects. We find that temperature-dependent structural distortion is the main source of various temperature-induced magnetic states in Br-defect host CsPbBr3 PQDs. Comprehensively examined magnetization data through Arrott plots, Langevin and Brillouin function fitting, and structural analysis reveal the presence of various oxidation states (i.e., Pb0, Pb+, Pb2+, and Pb3+) yielding different magnetic states, such as diamagnetic states above 90 K, paramagnetic states below ≈90 K, and perhaps locally ordered states between 58 and 90 K. It is realized from theoretical fits that paramagnetic ions exist (i.e., superparamagnetic behavior) due to Br defects causing Pb+ (and/or Pb3+ ions) in the diamagnetic region. We anticipate that our findings will spur future research of the development of spin-optoelectronics, such as spin light-emitting diodes, and spintronics devices based on CsPbBr3 PQDs.

4.
Biosensors (Basel) ; 13(3)2023 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-36979587

RESUMEN

Early-stage uric acid (UA) abnormality detection is crucial for a healthy human. With the evolution of nanoscience, metal oxide nanostructure-based sensors have become a potential candidate for health monitoring due to their low-cost, easy-to-handle, and portability. Herein, we demonstrate the synthesis of puffy balls-like cobalt oxide nanostructure using a hydrothermal method and utilize them to modify the working electrode for non-enzymatic electrochemical sensor fabrication. The non-enzymatic electrochemical sensor was utilized for UA determination using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The puffy balls-shaped cobalt oxide nanostructure-modified glassy carbon (GC) electrode exhibited excellent electro-catalytic activity during UA detection. Interestingly, when we compared the sensitivity of non-enzymatic electrochemical UA sensors, the DPV technique resulted in high sensitivity (2158 µA/mM.cm2) compared to the CV technique (sensitivity = 307 µA/mM.cm2). The developed non-enzymatic electrochemical UA sensor showed good selectivity, stability, reproducibility, and applicability in the human serum. Moreover, this study indicates that the puffy balls-shaped cobalt oxide nanostructure can be utilized as electrode material for designing (bio)sensors to detect a specific analyte.


Asunto(s)
Nanoestructuras , Ácido Úrico , Humanos , Reproducibilidad de los Resultados , Óxidos/química , Electrodos , Técnicas Electroquímicas/métodos
5.
Biosensors (Basel) ; 12(12)2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36551107

RESUMEN

Transition metal oxide (TMO)-based nanomaterials are effectively utilized to fabricate clinically useful ultra-sensitive sensors. Different nanostructured nanomaterials of TMO have attracted a lot of interest from researchers for diverse applications. Herein, we utilized a hydrothermal method to develop porous nanosheets of cobalt oxide. This synthesis method is simple and low temperature-based. The morphology of the porous nanosheets like cobalt oxide was investigated in detail using FESEM and TEM. The morphological investigation confirmed the successful formation of the porous nanosheet-like nanostructure. The crystal characteristic of porous cobalt oxide nanosheets was evaluated by XRD analysis, which confirmed the crystallinity of as-synthesized cobalt oxide nanosheets. The uric acid sensor fabrication involves the fixing of porous cobalt oxide nanosheets onto the GCE (glassy carbon electrode). The non-enzymatic electrochemical sensing was measured using CV and DPV analysis. The application of DPV technique during electrochemical testing for uric acid resulted in ultra-high sensitivity (3566.5 µAmM-1cm-2), which is ~7.58 times better than CV-based sensitivity (470.4 µAmM-1cm-2). Additionally, uric acid sensors were tested for their selectivity and storage ability. The applicability of the uric acid sensors was tested in the serum sample through standard addition and recovery of known uric acid concentration. This ultrasensitive nature of porous cobalt oxide nanosheets could be utilized to realize the sensing of other biomolecules.


Asunto(s)
Nanoestructuras , Ácido Úrico , Porosidad , Óxidos/química , Nanoestructuras/química , Electrodos , Técnicas Electroquímicas/métodos
6.
RSC Adv ; 10(57): 34651-34657, 2020 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-35514400

RESUMEN

In the field of optoelectronics, all-inorganic CsPbBr3 perovskite nanocrystals (PNCs) have gained significant interest on account of their superb processability and ultra-high stability among all the counterparts. In this study, we conducted an in-depth analysis of CsPbBr3 PNCs using joint transient optical spectroscopies (time-resolved photoluminescence and ultrafast transient absorption) in a very comprehensive manner. In order to understand the in-depth analysis of excited-state kinetics, the transient absorption spectroscopy has been performed. The structure of interest of CsPbBr3 PNCs was subjected to the rates of the radiation energy of 0.10 mW (κ r/κ nr = ∼0.62) and 0.30 mW (κ r/κ nr = ∼0.64). With the rate of radiation energy 0.30 mW, it was observed that there was a significant increase in hot carrier relaxation together with high radiative recombination, resulting in a decrease in charge trappings. Herein, we demonstrate that the tuning of the rate of radiation energies helps to understand the charge-carrier kinetics of CsPbBr3 PNCs, which would thus improve the manufacturing of efficient photovoltaic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA