Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
J Appl Microbiol ; 135(8)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39108074

RESUMEN

AIMS: To evaluate the prevalence, molecular characteristics, antimicrobial susceptibility, and epithelial invasion of Streptococcus agalactiae strains isolated from pregnant women and newborns in Rio de Janeiro, Brazil. METHODS AND RESULTS: A total of 67 S. agalactiae isolates, 48 isolates from pregnant women and 19 from neonates, were analyzed. Capsular type Ia and V were predominant (35.8%/each). The multilocus sequence typing analysis revealed the presence of 19 STs grouped into 6 clonal complexes with prevalence of CC17/40.3% and CC23/34.3%. The lmb and iag virulence genes were found in 100% of isolates. Four S. agalactiae strains, belonging to CC17/ST1249 and CC23/ST23, were able to adhere to A549 respiratory epithelial cells. Antimicrobial resistance was verified mainly to tetracycline (85%), erythromycin (70.8%), and clindamycin (58.3%). Four S. agalactiae isolates were multidrug resistant. The resistance genes tested were found in 92.5% of isolates for tetM, 58.2% for ermB, 28.4% for mefAE, and 10.4% for tetO. CONCLUSION: The study showed a high prevalence of virulence and antimicrobial genes in S. agalactiae strains isolated from pregnant women and newborns, supporting the idea that continued surveillance is necessary to identify risk factors and perform long-term follow-up in pregnant women and neonates in Rio de Janeiro.


Asunto(s)
Antibacterianos , Células Epiteliales , Pruebas de Sensibilidad Microbiana , Tipificación de Secuencias Multilocus , Infecciones Estreptocócicas , Streptococcus agalactiae , Streptococcus agalactiae/genética , Streptococcus agalactiae/efectos de los fármacos , Streptococcus agalactiae/aislamiento & purificación , Femenino , Humanos , Brasil , Embarazo , Infecciones Estreptocócicas/microbiología , Antibacterianos/farmacología , Recién Nacido , Células Epiteliales/microbiología , Farmacorresistencia Bacteriana/genética , Adulto , Factores de Virulencia/genética , Complicaciones Infecciosas del Embarazo/microbiología , Farmacorresistencia Bacteriana Múltiple/genética , Virulencia/genética
2.
Mem Inst Oswaldo Cruz ; 115: e190398, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32187326

RESUMEN

BACKGROUND: Streptococcus agalactiae capsular type III strains are a leading cause of invasive neonatal infections. Many pathogens have developed mechanisms to escape from host defense response using the host membrane microdomain machinery. Lipid rafts play an important role in a variety of cellular functions and the benefit provided by interaction with lipid rafts can vary from one pathogen to another. OBJECTIVES: This study aims to evaluate the involvement of membrane microdomains during infection of human endothelial cell by S. agalactiae. METHODS: The effects of cholesterol depletion and PI3K/AKT signaling pathway activation during S. agalactiae-human umbilical vein endothelial cells (HUVEC) interaction were analysed by pre-treatment with methyl-ß-cyclodextrin (MßCD) or LY294002 inhibitors, immunofluorescence and immunoblot analysis. The involvement of lipid rafts was analysed by colocalisation of bacteria with flotillin-1 and caveolin-1 using fluorescence confocal microscopy. FINDINGS: In this work, we demonstrated the importance of the integrity of lipid rafts microdomains and activation of PI3K/Akt pathway during invasion of S. agalactiae strain to HUVEC cells. Our results suggest the involvement of flotillin-1 and caveolin-1 during the invasion of S. agalactiae strain in HUVEC cells. CONCLUSIONS: The collection of our results suggests that lipid microdomain affects the interaction of S. agalactiae type III belonging to the hypervirulent ST-17 with HUVEC cells through PI3K/Akt signaling pathway.


Asunto(s)
Células Endoteliales/virología , Lípidos de la Membrana , Microdominios de Membrana/virología , Streptococcus agalactiae/patogenicidad , Virulencia , Humanos , Recién Nacido , Streptococcus agalactiae/genética
3.
Mem Inst Oswaldo Cruz ; 113(6): e140421, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29641644

RESUMEN

BACKGROUND Streptococcus agalactiae can causes sepsis, pneumonia, and meningitis in neonates, the elderly, and immunocompromised patients. Although the virulence properties of S. agalactiae have been partially elucidated, the molecular mechanisms related to reactive oxygen species (ROS) generation in infected human endothelial cells need further investigation. OBJECTIVES This study aimed to evaluate the influence of oxidative stress in human umbilical vein endothelial cells (HUVECs) during S. agalactiae infection. METHODS ROS production during S. agalactiae-HUVEC infection was detected using the probe CM-H2DCFDA. Microfilaments labelled with phalloidin-FITC and p47phox-Alexa 546 conjugated were analysed by immunofluorescence. mRNA levels of p47phox (NADPH oxidase subunit) were assessed using Real Time qRT-PCR. The adherence and intracellular viability of S. agalactiae in HUVECs with or without pre-treatment of DPI, apocynin (NADPH oxidase inhibitors), and LY294002 (PI3K inhibitor) were evaluated by penicillin/gentamicin exclusion. Phosphorylation of p47phox and Akt activation by S. agalactiae were evaluated by immunoblotting analysis. FINDINGS Data showed increased ROS production 15 min after HUVEC infection. Real-Time qRT-PCR and western blotting performed in HUVEC infected with S. agalactiae detected alterations in mRNA levels and activation of p47phox. Pre-treatment of endothelial cells with NADPH oxidase (DPI and apocynin) and PI3K/Akt pathway (LY294002) inhibitors reduced ROS production, bacterial intracellular viability, and generation of actin stress fibres in HUVECs infected with S. agalactiae. CONCLUSIONS ROS generation via the NADPH oxidase pathway contributes to invasion of S. agalactiae in human endothelial cells accompanied by cytoskeletal reorganisation through the PI3K/Akt pathway, which provides novel evidence for the involvement of oxidative stress in S. agalactiae pathogenesis.


Asunto(s)
Células Endoteliales de la Vena Umbilical Humana/metabolismo , NADPH Oxidasas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Infecciones Estreptocócicas/metabolismo , Streptococcus agalactiae/metabolismo , Análisis de Varianza , Adhesión Bacteriana , Western Blotting , Células Endoteliales de la Vena Umbilical Humana/microbiología , Humanos , NADPH Oxidasas/análisis , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/análisis , Reacción en Cadena en Tiempo Real de la Polimerasa , Valores de Referencia , Transducción de Señal/fisiología , Factores de Tiempo
4.
Antonie Van Leeuwenhoek ; 107(6): 1387-99, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25828766

RESUMEN

Biofilm-related infections are considered a major cause of morbidity and mortality in hospital environments. Biofilms allow microorganisms to exchange genetic material and to become persistent colonizers and/or multiresistant to antibiotics. Corynebacterium pseudodiphtheriticum (CPS), a commensal bacterium that colonizes skin and mucosal sites has become progressively multiresistant and responsible for severe nosocomial infections. However, virulence factors of this emergent pathogen remain unclear. Herein, we report the adhesive properties and biofilm formation on hydrophilic (glass) and hydrophobic (plastic) abiotic surfaces by CPS strains isolated from patients with localized (ATCC10700/Pharyngitis) and systemic (HHC1507/Bacteremia) infections. Adherence to polystyrene attributed to hydrophobic interactions between bacterial cells and this negatively charged surface indicated the involvement of cell surface hydrophobicity in the initial stage of biofilm formation. Attached microorganisms multiplied and formed microcolonies that accumulated as multilayered cell clusters, a step that involved intercellular adhesion and synthesis of extracellular matrix molecules. Further growth led to the formation of dense bacterial aggregates embedded in the exopolymeric matrix surrounded by voids, typical of mature biofilms. Data also showed CPS recognizing human fibrinogen (Fbg) and fibronectin (Fn) and involvement of these sera components in formation of "conditioning films". These findings suggested that biofilm formation may be associated with the expression of different adhesins. CPS may form biofilms in vivo possibly by an adherent biofilm mode of growth in vitro currently demonstrated on hydrophilic and hydrophobic abiotic surfaces. The affinity to Fbg and Fn and the biofilm-forming ability may contribute to the establishment and dissemination of infection caused by CPS.


Asunto(s)
Adhesión Bacteriana , Biopelículas/crecimiento & desarrollo , Corynebacterium/fisiología , Microbiología Ambiental , Fibrinógeno/metabolismo , Fibronectinas/metabolismo , Adhesinas Bacterianas/metabolismo , Bacteriemia/microbiología , Técnicas Bacteriológicas , Corynebacterium/crecimiento & desarrollo , Corynebacterium/aislamiento & purificación , Infecciones por Corynebacterium/microbiología , Vidrio , Humanos , Microscopía , Faringitis/microbiología , Plásticos
5.
Microbiology (Reading) ; 160(Pt 3): 537-546, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24344208

RESUMEN

Although infection by Corynebacterium diphtheriae is a model of extracellular mucosal pathogenesis, different clones have been also associated with invasive infections such as sepsis, endocarditis, septic arthritis and osteomyelitis. The mechanisms that promote C. diphtheriae infection and haematogenic dissemination need further investigation. In this study we evaluated the association and invasion mechanisms with human umbilical vein endothelial cells (HUVECs) and experimental arthritis in mice of endocarditis-associated strains and control non-invasive strains. C. diphtheriae strains were able to adhere to and invade HUVECs at different levels. The endocarditis-associated strains displayed an aggregative adherence pattern and a higher number of internalized viable cells in HUVECs. Transmission electron microscopy (TEM) analysis revealed intracellular bacteria free in the cytoplasm and/or contained in a host-membrane-confined compartment as single micro-organisms. Data showed bacterial internalization dependent on microfilament and microtubule stability and involvement of protein phosphorylation in the HUVEC signalling pathway. A high number of affected joints and high arthritis index in addition to the histopathological features indicated a strain-dependent ability of C. diphtheriae to cause severe polyarthritis. A correlation between the arthritis index and increased systemic levels of IL-6 and TNF-α was observed for endocarditis-associated strains. In conclusion, higher incidence of potential mechanisms by which C. diphtheriae may access the bloodstream through the endothelial barrier and stimulate the production of pro-inflammatory cytokines such as IL-6 and TNF-α, in addition to the ability to affect the joints and induce arthritis through haematogenic spread are thought to be related to the pathogenesis of endocarditis-associated strains.


Asunto(s)
Corynebacterium diphtheriae/fisiología , Endocarditis/microbiología , Células Endoteliales/microbiología , Animales , Artritis/microbiología , Adhesión Bacteriana , Línea Celular , Citocinas/biosíntesis , Endocarditis/metabolismo , Células Endoteliales/metabolismo , Femenino , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/microbiología , Humanos , Ratones
6.
Mem Inst Oswaldo Cruz ; 109(7): 940-3, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25410999

RESUMEN

Endothelial dysfunction is a major component of the pathophysiology of septicaemic group B Streptococcus (GBS) infections. Although cytokines have been shown to activate human umbilical vein endothelial cells (HUVECs), the capacity of interferon (IFN)-γ to enhance the microbicidal activity of HUVECs against GBS has not been studied. We report that the viability of intracellular bacteria was reduced in HUVECs activated by IFN-γ. Enhanced fusion of lysosomes with bacteria-containing vacuoles was observed by acid phosphatase and the colocalisation of Rab-5, Rab-7 and lysosomal-associated membrane protein-1 with GBS in IFN-γ-activated HUVECs. IFN-γ resulted in an enhancement of the phagosome maturation process in HUVECs, improving the capacity to control the intracellular survival of GBS.


Asunto(s)
Antiinfecciosos/farmacología , Células Endoteliales de la Vena Umbilical Humana/microbiología , Interferón gamma/farmacología , Viabilidad Microbiana/efectos de los fármacos , Infecciones Estreptocócicas/tratamiento farmacológico , Streptococcus agalactiae/efectos de los fármacos , Fosfatasa Ácida/metabolismo , Adhesión Bacteriana/efectos de los fármacos , Endocitosis , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Lisosomas/efectos de los fármacos , Fagosomas/efectos de los fármacos , Cultivo Primario de Células , Infecciones Estreptocócicas/prevención & control , Análisis de Supervivencia
7.
Front Immunol ; 15: 1430901, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38947337

RESUMEN

A maternal vaccine to protect newborns against invasive Streptococcus agalactiae infection is a developing medical need. The vaccine should be offered during the third trimester of pregnancy and induce strong immune responses and placental transfer of protective antibodies. Polysaccharide vaccines against S. agalactiae conjugated to protein carriers are in advanced stages of development. Additionally, protein-based vaccines are also in development, showing great promise as they can provide protection regardless of serotype. Furthermore, safety concerns regarding a new vaccine are the main barriers identified. Here, we present vaccines in development and identified safety, cost, and efficacy concerns, especially in high-need, low-income countries.


Asunto(s)
Infecciones Estreptocócicas , Vacunas Estreptocócicas , Streptococcus agalactiae , Streptococcus agalactiae/inmunología , Humanos , Infecciones Estreptocócicas/inmunología , Infecciones Estreptocócicas/prevención & control , Infecciones Estreptocócicas/microbiología , Vacunas Estreptocócicas/inmunología , Embarazo , Femenino , Animales , Complicaciones Infecciosas del Embarazo/inmunología , Complicaciones Infecciosas del Embarazo/prevención & control , Complicaciones Infecciosas del Embarazo/microbiología , Desarrollo de Vacunas , Recién Nacido , Anticuerpos Antibacterianos/inmunología
8.
Antonie Van Leeuwenhoek ; 104(6): 1125-33, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24052367

RESUMEN

We explored Group B Streptococcus (GBS)-induced apoptosis in human umbilical vein endothelial cells (HUVEC) and the role of phosphoramidon, a zinc metalloprotease inhibitor, in this process. GBS 90186 strain (serotype V, a blood isolate) and concentrated supernatant (CS) were used to investigate the viability and morphological alterations in HUVEC by Trypan blue uptake, electrophoresis in 2 % agarose gel and scanning electron microscopy assays. Apoptosis before and after phosphoramidon-treatment were verified by flow cytometry using annexin V-FITC labeling. Differences were considered significant when P < 0.05 using unpaired Student's t test. GBS and CS induced HUVEC death by apoptosis (76.5 and 32 %, respectively) with an increasing pro-apoptotic Bax expression and decreasing anti-apoptotic Bcl-2 expression. Caspase-3 was activated during GBS-induced endothelial apoptosis. Phosphoramidon reduced 89.3 and 100 % of GBS and CS cell death by apoptosis, respectively. Some GBS strains may induce cell death by apoptosis with involvement of metalloproteases and signaling through the intrinsic pathway of apoptosis, which may contribute to GBS survival during sepsis of adults and neonates.


Asunto(s)
Apoptosis , Células Endoteliales/microbiología , Células Endoteliales/fisiología , Glicopéptidos/metabolismo , Metaloproteasas/metabolismo , Inhibidores de Proteasas/metabolismo , Streptococcus agalactiae/enzimología , Anexina A5/análisis , Supervivencia Celular , Células Cultivadas , Electroforesis , Humanos , Metaloproteasas/antagonistas & inhibidores , Microscopía Electrónica , Coloración y Etiquetado/métodos , Azul de Tripano/metabolismo
9.
Front Immunol ; 14: 1075834, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36761775

RESUMEN

The inflammasomes are intracellular multimeric protein complexes consisting of an innate immune sensor, the adapter protein ASC and the inflammatory caspases-1 and/or -11 and are important for the host defense against pathogens. Activaton of the receptor leads to formation of the inflammasomes and subsequent processing and activation of caspase-1 that cleaves the proinflammatory cytokines IL-1ß and IL-18. Active caspase-1, and in some instances caspase-11, cleaves gasdermin D that translocates to the cell membrane where it forms pores resulting in the cell death program called pyroptosis. Inflammasomes can detect a range of microbial ligands through direct interaction or indirectly through diverse cellular processes including changes in ion fluxes, production of reactive oxygen species and disruption of various host cell functions. In this review, we will focus on the NLRP3, NLRP6, NLRC4 and AIM2 inflammasomes and how they are activated and regulated during infections with Gram-positive bacteria, including Staphylococcus spp., Streptococcus spp. and Listeria monocytogenes.


Asunto(s)
Proteínas Portadoras , Inflamasomas , Inflamasomas/metabolismo , Proteínas Portadoras/metabolismo , Caspasas/metabolismo , Citocinas/metabolismo , Caspasa 1/metabolismo , Bacterias Grampositivas/metabolismo
10.
Pathogens ; 12(4)2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37111466

RESUMEN

Streptococcus agalactiae (Group B Streptococcus, GBS) is the leading cause of neonatal sepsis and meningitis but has been recently isolated from non-pregnant adults with underlying medical conditions like diabetes. Despite diabetes being a key risk factor for invasive disease, the pathological consequences during GBS infection remain poorly characterized. Here, we demonstrate the pathogenicity of the GBS90356-ST17 and COH1-ST17 strains in streptozotocin-induced diabetic mice. We show that GBS can spread through the bloodstream and colonize several tissues, presenting a higher bacterial count in diabetic-infected mice when compared to non-diabetic-infected mice. Histological sections of the lungs showed inflammatory cell infiltration, collapsed septa, and red blood cell extravasation in the diabetic-infected group. A significant increase in collagen deposition and elastic fibers were also observed in the lungs. Moreover, the diabetic group presented red blood cells that adhered to the valve wall and disorganized cardiac muscle fibers. An increased expression of KC protein, IL-1ß, genes encoding immune cell markers, and ROS (reactive oxygen species) production was observed in diabetic-infected mice, suggesting GBS promotes high levels of inflammation when compared to non-diabetic animals. Our data indicate that efforts to reverse the epidemic of diabetes could considerably reduce the incidence of invasive infection, morbidity and mortality due to GBS.

11.
Microb Pathog ; 52(3): 165-76, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22239957

RESUMEN

Although Corynebacterium diphtheriae has been classically described as an exclusively extracellular pathogen, there is growing evidence that it may be internalized by epithelial cells. The aim of the present report was to investigate the nature and involvement of the surface-exposed non-fimbrial 67-72 kDa proteins (67-72p), previously characterized as adhesin/hemagglutinin, in C. diphtheriae internalization by HEp-2 cells. Transmission electron microscopy and bacterial internalization inhibition assays indicated the role of 67-72p as invasin for strains of varied sources. Cytoskeletal changes with accumulation of polymerized actin in HEp-2 cells beneath adherent 67-72p-adsorbed microspheres were observed by the Fluorescent actin staining test. Trypan blue staining method and Methylthiazole tetrazolium reduction assay showed a significant decrease in viability of HEp-2 cells treated with 67-72p. Morphological changes in HEp-2 cells observed after treatment with 67-72p included vacuolization, nuclear fragmentation and the formation of apoptotic bodies. Flow cytometry revealed an apoptotic volume decrease in HEp-2 cells treated with 67-72p. Moreover, a double-staining assay using Propidium Iodide/Annexin V gave information about the numbers of vital vs. early apoptotic cells and late apoptotic or secondary necrotic cells. The comparative analysis of MALDI-TOF MS experiments with the probes provided for 67-72p CDC-E8392 with an in silico proteome deduced from the complete genome sequence of C. diphtheriae identified with significant scores 67-72p as the protein DIP0733. In conclusion, DIP0733 (67-72p) may be directly implicated in bacterial invasion and apoptosis of epithelial cells in the early stages of diphtheria and C. diphtheriae invasive infection.


Asunto(s)
Apoptosis , Corynebacterium diphtheriae/patogenicidad , Endocitosis , Hemaglutininas/metabolismo , Hepatocitos/microbiología , Hepatocitos/fisiología , Factores de Virulencia/metabolismo , Actinas/metabolismo , Línea Celular , Supervivencia Celular , Corynebacterium diphtheriae/genética , Hemaglutininas/genética , Humanos , Multimerización de Proteína , Factores de Virulencia/genética
12.
Mem Inst Oswaldo Cruz ; 107(4): 486-93, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22666859

RESUMEN

Corynebacterium pseudodiphtheriticum is a well-known human pathogen that mainly causes respiratory disease and is associated with high mortality in compromised hosts. Little is known about the virulence factors and pathogenesis of C. pseudodiphtheriticum. In this study, cultured human epithelial (HEp-2) cells were used to analyse the adherence pattern, internalisation and intracellular survival of the ATCC 10700 type strain and two additional clinical isolates. These microorganisms exhibited an aggregative adherence-like pattern to HEp-2 cells characterised by clumps of bacteria with a "stacked-brick" appearance. The differences in the ability of these microorganisms to invade and survive within HEp-2 cells and replicate in the extracellular environment up to 24 h post infection were evaluated. The fluorescent actin staining test demonstrated that actin polymerisation is involved in the internalisation of the C. pseudodiphtheriticum strains. The depolymerisation of microfilaments by cytochalasin E significantly reduced the internalisation of C. pseudodiphtheriticum by HEp-2 cells. Bacterial internalisation and cytoskeletal rearrangement seemed to be partially triggered by the activation of tyrosine kinase activity. Although C. pseudodiphtheriticum strains did not demonstrate an ability to replicate intracellularly, HEp-2 cells were unable to fully clear the pathogen within 24 h. These characteristics may explain how some C. pseudodiphtheriticum strains cause severe infection in human patients.


Asunto(s)
Adhesión Bacteriana/fisiología , Corynebacterium/patogenicidad , Células Epiteliales/microbiología , Corynebacterium/fisiología , Células Hep G2 , Humanos , Virulencia
13.
Front Immunol ; 13: 902907, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35911737

RESUMEN

Sepsis is a generalized disease characterized by an extreme response to a severe infection. Moreover, challenges remain in the diagnosis, treatment and management of septic patients. In this mini-review we demonstrate developments on cellular pathogenesis and the role of Caveolin-1 (Cav-1) in sepsis. Studies have shown that Cav-1 has a significant role in sepsis through the regulation of membrane traffic and intracellular signaling pathways. In addition, activation of apoptosis/autophagy is considered relevant for the progression and development of sepsis. However, how Cav-1 is involved in sepsis remains unclear, and the precise mechanisms need to be further investigated. Finally, the role of Cav-1 in altering cell permeability during inflammation, in sepsis caused by microorganisms, apoptosis/autophagy activation and new therapies under study are discussed in this mini-review.


Asunto(s)
Caveolina 1 , Sepsis , Autofagia/fisiología , Caveolina 1/genética , Caveolina 1/metabolismo , Humanos , Permeabilidad , Sepsis/genética , Sepsis/metabolismo , Transducción de Señal
14.
Braz J Microbiol ; 52(1): 303-310, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33398672

RESUMEN

Streptococcus agalactiae is a recognized pathogen associated with infections in neonates, elderly, and immunocompromised adults, particularly those with cancer. In the present investigation, clinical-epidemiological features, multidrug resistance profiles, and virulence genes of S. agalactiae strains isolated from cancer patients were investigated. S. agalactiae capsular distribution assays demonstrated that Ia (43.6%) and V (23.6%) types were predominantly detected among 55 clinical isolates tested; only one strain (GBS1428) was capsular type III/ST-17. The fbsB and hylB genes were detected in all isolates, while the iag, lmb, and fbsA genes were detected in 94.5%, 91%, and 91% of oncological isolates, respectively. The combination of PI-1 and PI-2a was the most common (60%) among S. agalactiae strains isolated from oncologic patients. S. agalactiae strains were resistant to tetracycline (85.5%), erythromycin (9%), and clindamycin (5.5%). Norfloxacin non-susceptible was detected in 7.3% of S. agalactiae strains. Our findings reinforce the need for S. agalactiae control measures in Brazil, including cancer patients.


Asunto(s)
Neoplasias/complicaciones , Infecciones Estreptocócicas/epidemiología , Infecciones Estreptocócicas/microbiología , Streptococcus agalactiae/genética , Streptococcus agalactiae/aislamiento & purificación , Adolescente , Adulto , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Brasil/epidemiología , Farmacorresistencia Bacteriana Múltiple , Genotipo , Humanos , Pruebas de Sensibilidad Microbiana , Persona de Mediana Edad , Neoplasias/microbiología , Streptococcus agalactiae/efectos de los fármacos , Streptococcus agalactiae/patogenicidad , Factores de Virulencia/genética , Adulto Joven
15.
Mem Inst Oswaldo Cruz ; 105(5): 706-11, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20835621

RESUMEN

The production of fibrinous exudates may play an important role in determining the outcome of bacterial infection. Although pseudomembrane formation is a characteristic feature of diphtheria, little is known about the fibrinogen (Fbn)-binding properties of Corynebacterium diphtheriae strains and the influence of the gene that codes for diphtheria toxin (tox gene) in this process. In this study we demonstrated the ability of C. diphtheriae strains to bind to Fbn and to convert Fbn to fibrin. Bacterial interaction with rabbit plasma was evaluated by both slide and tube tests. Interaction of microorganisms with human Fbn was evaluated by both enzyme linked immunosorbent assay (ELISA) and fluorescein isothiocyanate-conjugated (FITC) Fbn binding assays. Nontoxigenic and toxigenic strains formed bacterial aggregates in the presence of plasma in the slide tests. The ability to convert Fbn to a loose web of fibrin in the plasma solution in the tube tests appeared to be a common characteristic of the species, including strains that do not carry the tox gene. Fbn binding to C. diphtheriae strains occurred at varying intensities, as demonstrated by the FITC-Fbn and ELISA binding assays. Our data suggest that the capacity to bind to Fbn and to convert Fbn to fibrin may play a role in pseudomembrane formation and act as virulence determinants of both nontoxigenic and toxigenic strains.


Asunto(s)
Corynebacterium diphtheriae/metabolismo , Toxina Diftérica/metabolismo , Fibrinógeno/metabolismo , Animales , Corynebacterium diphtheriae/genética , Toxina Diftérica/genética , Ensayo de Inmunoadsorción Enzimática , Fibrinógeno/genética , Humanos , Conejos , Virulencia/genética
16.
Infect Genet Evol ; 80: 104195, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31954181

RESUMEN

Streptococcus agalactiae are important pathogenic bacteria that cause severe infections in humans, especially neonates. The mechanism by which ST-17 causes invasive infections than other STs is not well understood. In this study, we sequenced the first genome of a S. agalactiae ST-17 strain isolated in Brazil using the Illumina HiSeq 2500 technology. S. agalactiae GBS90356 ST-17 belongs to the capsular type III and was isolated from a neonatal with a fatal case of meningitis. The genome presented a size of 2.03 Mbp and a G + C content of 35.2%. S. agalactiae has 706 genes in its core genome and an open pan-genome with a size of 5.020 genes, suggesting a high genomic plasticity. GIPSy software was used to identify 10 Pathogenicity islands (PAIs) which corresponded to 15% of the genome size. IslandViewer4 corroborated the prediction of six PAIs. The pathogenicity islands showed important virulence factors genes for S. agalactiae e.g. neu, cps, dlt, fbs, cfb, lmb. SignalP detected 20 proteins with signal peptides among the 352 proteins found in PAIs, which 60% were located in the SagPAI_5. SagPAI_2 and 5 were mainly detected in ST-17 strains studied. Moreover, we identified 51 unique genes, 9 recombination regions and a large number of SNPs with an average of 760.3 polymorphisms, which can be related with high genomic plasticity and virulence during host-pathogen interactions. Our results showed implications for pathogenesis, evolution, concept of species and in silico analysis value to understand the epidemiology and genome plasticity of S. agalactiae.


Asunto(s)
Genoma Bacteriano , Genómica , Infecciones Estreptocócicas/epidemiología , Infecciones Estreptocócicas/microbiología , Streptococcus agalactiae/clasificación , Streptococcus agalactiae/genética , Brasil/epidemiología , Biología Computacional/métodos , Genómica/métodos , Humanos , Anotación de Secuencia Molecular , Filogenia , Vigilancia en Salud Pública , Streptococcus agalactiae/aislamiento & purificación , Streptococcus agalactiae/patogenicidad , Virulencia/genética , Factores de Virulencia/genética
17.
Microb Drug Resist ; 26(12): 1546-1558, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32429830

RESUMEN

Disinfection and antisepsis are of primary importance in controlling nosocomial infections and outbreaks by pathogens expressing multiple resistance to antimicrobial agents (multidrug-resistant [MDR]) used in therapy. Nowadays, infections related to health services (HAIs) due to MDR and multidrug-susceptible (MDS) Corynebacterium striatum should not be underestimated, including patients using invasive medical devices. The virulence potential of C. striatum needs further investigation. Currently, susceptibility profiles of planktonic and/or sessile forms of four C. striatum strains of different pulsed-field gel electrophoresis types were examined as biocides based on the manufacturer's recommendations: 2% glutaraldehyde (GA), 2% peracetic acid (PA), 1% potassium monopersulfate (Virkon®; VK), 1% sodium hypochlorite (SH), and 70% ethyl alcohol (ET). Time-kill assays using 2% bovine serum albumin (BSA) were performed for evaluation of influence of organic matter on biocides effects. Planktonic forms expressed GA resistance at different levels. C. striatum viability was observed until 2, 4, 20, and 30 min for MDR 2369/II, MDS 1954/IV, MDR 1987/I, and MDS 1961/III strains, respectively. In contrast to GA, the biocides PA, VK24h, SH, and ET had higher effective bacterial mortality. However, storage of VK (48 hr) reduced their biocide activities. Moreover, mature biofilms were produced on abiotic substrates, including steel surfaces. Post-treatment with GA (30 min), survival of sessile forms was ≥100% than planktonic forms of all C. striatum tested strains. Independent of biocides tested, BSA increased the survival of planktonic and sessile forms (p ≤ 0.005). Present data indicated that hospital staff should be aware of dissemination and eradication of HAIs by C. striatum presenting resistance to biocides, including high-level disinfectants, such as GA.


Asunto(s)
Antiinfecciosos Locales/farmacología , Biopelículas/efectos de los fármacos , Corynebacterium/efectos de los fármacos , Desinfectantes/farmacología , Farmacorresistencia Bacteriana Múltiple , Plancton/efectos de los fármacos , Adulto , Infección Hospitalaria/prevención & control , Electroforesis en Gel de Campo Pulsado , Femenino , Humanos , Masculino , Pruebas de Sensibilidad Microbiana , Persona de Mediana Edad , Virulencia
19.
Int J Mol Med ; 22(1): 119-25, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18575784

RESUMEN

Group B Streptococcus (GBS) is a major etiologic agent of neonatal bacterial infections and is the most common cause of sepsis and pneumonia in newborns. Surface and secreted molecules of GBS are often essential virulence factors which are involved in the adherence of the bacteria to host cells or are required to suppress the defense mechanisms of hosts. We analyzed the peptidase profiles of GBS by detection of proteolytic activities on SDS-PAGE containing copolymerized gelatin as substrate. Based on the inhibition by o-phenathroline and EGTA, three distinct peptidases of 220, 200 and 180 kDa were identified in the culture medium, besides one major cell-associated proteolytic activity, a 200-kDa metallopeptidase, suggesting that all were zinc-metallopeptidases. GBS culture supernatants, rich in metallotype peptidases, also cleaved fibronectin, laminin, type IV collagen, fibrinogen and albumin. Cleavage of the host extracellular matrix by GBS may be a relevant factor in the process of bacterial dissemination and/or invasion. Notably, metallopeptidase inhibitors strongly blocked GBS growth as well as its interaction with human cell lineages. Understanding the contribution of peptidases to the pathogenesis of GBS disease may broaden our perception of how this significant pathogen causes severe infections in newborn infants.


Asunto(s)
Linaje de la Célula/efectos de los fármacos , Metaloproteasas/metabolismo , Inhibidores de Proteasas/farmacología , Streptococcus agalactiae/citología , Streptococcus agalactiae/enzimología , Línea Celular , Proliferación Celular/efectos de los fármacos , Humanos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Streptococcus agalactiae/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA