RESUMEN
Loss-of-function mutation of ABCC9, the gene encoding the SUR2 subunit of ATP sensitive-potassium (KATP) channels, was recently associated with autosomal recessive ABCC9-related intellectual disability and myopathy syndrome (AIMS). Here we identify nine additional subjects, from seven unrelated families, harbouring different homozygous loss-of-function variants in ABCC9 and presenting with a conserved range of clinical features. All variants are predicted to result in severe truncations or in-frame deletions within SUR2, leading to the generation of non-functional SUR2-dependent KATP channels. Affected individuals show psychomotor delay and intellectual disability of variable severity, microcephaly, corpus callosum and white matter abnormalities, seizures, spasticity, short stature, muscle fatigability and weakness. Heterozygous parents do not show any conserved clinical pathology but report multiple incidences of intra-uterine fetal death, which were also observed in an eighth family included in this study. In vivo studies of abcc9 loss-of-function in zebrafish revealed an exacerbated motor response to pentylenetetrazole, a pro-convulsive drug, consistent with impaired neurodevelopment associated with an increased seizure susceptibility. Our findings define an ABCC9 loss-of-function-related phenotype, expanding the genotypic and phenotypic spectrum of AIMS and reveal novel human pathologies arising from KATP channel dysfunction.
Asunto(s)
Discapacidad Intelectual , Enfermedades Musculares , Receptores de Sulfonilureas , Humanos , Discapacidad Intelectual/genética , Femenino , Receptores de Sulfonilureas/genética , Masculino , Animales , Niño , Enfermedades Musculares/genética , Preescolar , Adolescente , Pez Cebra , Mutación con Pérdida de Función/genética , Adulto , Linaje , Adulto JovenRESUMEN
The L1 cell adhesion molecule (L1) has demonstrated a range of beneficial effects in animal models of spinal cord injury, neurodegenerative disease, and ischemia; however, the role of L1 in TBI has not been fully examined. Mutations in the L1 gene affecting the extracellular domain of this type 1 transmembrane glycoprotein have been identified in patients with L1 syndrome. These patients suffer from hydrocephalus, MASA (mental retardation, adducted thumbs, shuffling gait, aphasia) symptoms, and corpus callosum agenesis. Clinicians have observed that recovery post-traumatic brain injury (TBI) varies among the population. This variability may be explained by the genetic differences present in the general population. In this study, we utilized a novel mouse model of L1 syndrome with a mutation at aspartic acid position 201 in the extracellular domain of L1 (L1-201). We assessed the impact of this specific single nucleotide polymorphism (SNP) localized to the X-chromosome L1 gene on recovery outcomes following TBI by comparing the L1-201 mouse mutants with their wild-type littermates. We demonstrate that male L1-201 mice exhibit significantly worse learning and memory outcomes in the Morris water maze after lateral fluid percussion (LFP) injury compared to male wild-type mice and a trend to worse motor function on the rotarod. However, no significant changes were observed in markers for inflammatory responses or apoptosis after TBI.
Asunto(s)
Lesiones Traumáticas del Encéfalo , Enfermedades Genéticas Ligadas al Cromosoma X , Hidrocefalia , Discapacidad Intelectual , Molécula L1 de Adhesión de Célula Nerviosa , Enfermedades Neurodegenerativas , Paraplejía Espástica Hereditaria , Humanos , Masculino , Animales , Ratones , Molécula L1 de Adhesión de Célula Nerviosa/genética , Polimorfismo de Nucleótido Simple , Hidrocefalia/genéticaRESUMEN
The L1 cell adhesion molecule plays an essential role in neural development and repair. It is not only a 'lock and key' recognition molecule, but an important signal transducer that stimulates regenerative-beneficial cellular functions such as neurite outgrowth, neuronal cell migration, survival, myelination, and synapse formation. Triggering L1 functions after neurotrauma improves functional recovery. In addition, loss-of-function mutations in the L1 gene lead to the L1 syndrome, a rare, X-linked neurodevelopmental disorder with an incidence of approximately 1:30,000 in newborn males. To use L1 for beneficial functions, we screened small compound libraries for L1 agonistic mimetics that trigger L1 functions and improve conditions in animal models of neurotrauma and the L1 syndrome. To understand the mechanisms underlying these functions, it is important to gain a better understanding of L1-dependent cellular signaling that is triggered by the L1 agonistic mimetics. We tested the cell signaling features of L1 agonistic mimetics that contribute to neurite outgrowth and neuronal migration. Our findings indicates that L1 agonistic mimetics trigger the same cell signaling pathways underlying neurite outgrowth, but only the L1 mimetics tacrine, polydatin, trimebutine and honokiol trigger neuronal migration. In contrast, the mimetics crotamiton and duloxetine did not affect neuronal migration, thus limiting their use in increasing neuronal migration, leaving open the question of whether this is a desired or not desired feature in the adult.
Asunto(s)
Molécula L1 de Adhesión de Célula Nerviosa , Animales , Masculino , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Neuronas/metabolismo , Transducción de Señal , Neurogénesis , Neuritas/metabolismoRESUMEN
Nogo-A, a glycoprotein expressed in oligodendrocytes and central nervous system myelin, inhibits regeneration after injury. Antibodies against Nogo-A neutralize this inhibitory activity, improve locomotor recovery in spinal cord-injured adult mammals, and promote regrowth/sprouting/saving of damaged axons beyond the lesion site. Nogo-A is also expressed by neurons. Complete ablation of Nogo-A in all cell types expressing it has been found to lead to recovery in some studies but not in others. Neuronal ablation of Nogo-A reduces axonal regrowth after injury. In view of these findings, we hypothesized that, in addition to neutralizing Nogo-A in oligodendrocytes and myelin, Nogo-A antibodies may act directly on neuronal Nogo-A to trigger neurite outgrowth and neuronal survival. Here, we show that polyclonal and monoclonal antibodies against Nogo-A enhance neurite growth and survival of cultured cerebellar granule neurons and increase expression of the neurite outgrowth-promoting L1 cell adhesion molecule and polysialic acid. Application of inhibitors of signal transducing molecules, such as c-src, c-fyn, protein kinase A, and casein kinase II reduce antibody-triggered neurite outgrowth. These observations indicate that the recovery-promoting functions of antibodies against Nogo-A may not only be due to neutralizing Nogo-A in oligodendrocytes and myelin, but also to their interactions with Nogo-A on neurons.
Asunto(s)
Anticuerpos Monoclonales/metabolismo , Supervivencia Celular , Proteínas de la Mielina/metabolismo , Neuritas/metabolismo , Proyección Neuronal , Oligodendroglía/metabolismo , Fragmentos de Péptidos/metabolismo , Animales , Células Cultivadas , Sistema Nervioso Central/lesiones , Femenino , Masculino , Ratones , Proteínas de la Mielina/antagonistas & inhibidores , Regeneración Nerviosa , Neuritas/patología , Oligodendroglía/patología , Fragmentos de Péptidos/antagonistas & inhibidoresRESUMEN
AIMS/HYPOTHESIS: Insufficient insulin release and hyperglucagonaemia are culprits in type 2 diabetes. Cocaine- and amphetamine-regulated transcript (CART, encoded by Cartpt) affects islet hormone secretion and beta cell survival in vitro in rats, and Cart (-/-) mice have diminished insulin secretion. We aimed to test if CART is differentially regulated in human type 2 diabetic islets and if CART affects insulin and glucagon secretion in vitro in humans and in vivo in mice. METHODS: CART expression was assessed in human type 2 diabetic and non-diabetic control pancreases and rodent models of diabetes. Insulin and glucagon secretion was examined in isolated islets and in vivo in mice. Ca(2+) oscillation patterns and exocytosis were studied in mouse islets. RESULTS: We report an important role of CART in human islet function and glucose homeostasis in mice. CART was found to be expressed in human alpha and beta cells and in a subpopulation of mouse beta cells. Notably, CART expression was several fold higher in islets of type 2 diabetic humans and rodents. CART increased insulin secretion in vivo in mice and in human and mouse islets. Furthermore, CART increased beta cell exocytosis, altered the glucose-induced Ca(2+) signalling pattern in mouse islets from fast to slow oscillations and improved synchronisation of the oscillations between different islet regions. Finally, CART reduced glucagon secretion in human and mouse islets, as well as in vivo in mice via diminished alpha cell exocytosis. CONCLUSIONS/INTERPRETATION: We conclude that CART is a regulator of glucose homeostasis and could play an important role in the pathophysiology of type 2 diabetes. Based on the ability of CART to increase insulin secretion and reduce glucagon secretion, CART-based agents could be a therapeutic modality in type 2 diabetes.
Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatología , Glucagón/metabolismo , Insulina/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Animales , Western Blotting , Señalización del Calcio/fisiología , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/sangre , Electrofisiología , Exocitosis/genética , Exocitosis/fisiología , Femenino , Células Secretoras de Glucagón/metabolismo , Glucosa/metabolismo , Homeostasis , Humanos , Inmunohistoquímica , Hibridación in Situ , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Proteínas del Tejido Nervioso/genética , Reacción en Cadena en Tiempo Real de la PolimerasaRESUMEN
CD55 is a glycosylphosphatidylinositol-anchored protein, which inhibits complement activation by acting on the complement C3 convertases. CD55 is widely localized in the cholesterol rich regions of the cell plasma membrane termed membrane rafts. CD55 is attached to these specialized regions via a GPI link on the outer leaflet of the plasma membrane. Membrane rafts anchor many important signaling proteins, which control several cellular functions within the cell. For example, we recently demonstrated that the membrane raft protein and complement inhibitor CD59 also controls insulin secretion by an intracellular mechanism. Therefore, we have in this study aimed at addressing the expression and function of CD55 in pancreatic beta cells. To this end, we observe that CD55 is highly expressed in INS1 832/13 beta cells as well as human pancreatic islets. Diabetic human islets show a tendency for increased expression of CD55 when compared to the healthy controls. Importantly, silencing of CD55 in INS1 832/13 cells does not affect their insulin secretory capacity. On the other hand, silencing of CD55 diminished the intensity of membrane rafts as determined by Atto-SM staining. We hence conclude that CD55 expression is affected by glycemic status in human islets and plays a critical role in maintaining the conserved structure of rafts in pancreatic islets, which is similar to that of the related complement inhibitor CD59. However CD55 does not interfere with insulin secretion in beta cells, which is in sharp contrast to the action of the complement inhibitor CD59.
Asunto(s)
Antígenos CD55/fisiología , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Microdominios de Membrana/metabolismo , Animales , Antígenos CD55/genética , Línea Celular , Perfilación de la Expresión Génica , Humanos , Secreción de Insulina , RatasRESUMEN
Autism spectrum disorder (ASD) is a heterogeneous category of developmental psychiatric disorders which is characterized by inadequate social interaction, less communication, and repetitive phenotype behavior. ASD is comorbid with various types of disorders. The reported prevalence is 1% in the United Kingdom, 1.5% in the United States, and ~0.2% in India at present. The natural anti-inflammatory agents on brain development are linked to interaction with many types of inflammatory pathways affected by genetic, epigenetic, and environmental variables. Inflammatory targeting pathways have already been linked to ASD. However, these routes are diluted, and new strategies are being developed in natural anti-inflammatory medicines to treat ASD. This review summarizes the numerous preclinical and clinical studies having potential protective effects and natural anti-inflammatory agents on the developing brain during pregnancy. Inflammation during pregnancy activates the maternal infection that likely leads to the development of neuropsychiatric disorders in the offspring. The inflammatory pathways have been an effective target for the subject of translational research studies on ASD.
RESUMEN
Cell adhesion molecule L1 is a cell surface glycoprotein that promotes neuronal cell migration, fosters regeneration after spinal cord injury and ameliorates the consequences of neuronal degeneration in mouse and zebrafish models. Counter-indicative features of L1 were found in tumor progression: the more L1 is expressed, the more tumor cells migrate and increase their metastatic potential. L1's metastatic potential is further evidenced by its promotion of epithelial-mesenchymal transition, endothelial cell transcytosis and resistance to chemo- and radiotherapy. These unfortunate features are indicated by observations that cells that normally do not express L1 are induced to express it when becoming malignant. With the aim to ameliorate the devastating functions of L1 in tumors, we designed an alternative approach to counteract tumor cell migration. Libraries of small organic compounds were screened using the ELISA competition approach similar to the one that we used for identifying L1 agonistic mimetics. Whereas in the former approach, a function-triggering monoclonal antibody was used for screening libraries, we here used the function-inhibiting monoclonal antibody 324 that reduces the migration of neurons. We now show that the L1 antagonistic mimetics anagrelide, 2-hydroxy-5-fluoropyrimidine and mestranol inhibit the migration of cultured tumor cells in an L1-dependent manner, raising hopes for therapy.
Asunto(s)
Glioblastoma , Molécula L1 de Adhesión de Célula Nerviosa , Animales , Anticuerpos Monoclonales , Adhesión Celular , Movimiento Celular , Glioblastoma/tratamiento farmacológico , Ratones , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Pez Cebra/metabolismoRESUMEN
CHL1 is a close homolog of L1, a cell adhesion molecule that plays major roles in neural and tumor cell functions. We had found that young adult female mice deficient in CHL1 recovered better than their wild-type female littermates after thoracic Spinal Cord Injury (SCI). This observation was surprising, because CHL1 increases neurite outgrowth in vitro. Injury of adult mouse central and peripheral nervous systems upregulate CHL1 expression in neurons and astrocytes, consistent with CHL1's pro-active, homophilic interaction between CHL1 surface molecules in wild-type mice. After SCI, CHL1 expression was observed to increase in the glial scar, areas of axonal regrowth and remodeling of neural circuits. These observations were made only in females, and we therefore sought to analyze SCI in CHL1-deficient male mice. We now show that CHL1-deficient males did not recover better or worse than their male wild-type littermates. Primary and secondary lesion volumes were similar in the two genotypes, as seen in female mice which were studied in parallel with male mice. Assessment of peripheral leukocytes showed a significant increase in numbers of blood neutrophils at 24 h after SCI in males, but not in females. Lymphocyte numbers in mutant males increased slightly, but numbers of lymphocytes or monocytes did not differ significantly between males or females. These results indicate that CHL1-deficient males and females differ in the number of neutrophils but not lymphocytes or monocytes, suggesting that the difference between males and females is unlikely due to differences in leukocytes.
RESUMEN
Traumatic injuries to the nervous system, including the brain and spinal cord, lead to neurological dysfunction depending upon the severity of the injury. Due to the loss of motor (immobility) and sensory function (lack of sensation), spinal cord injury (SCI) and brain injury (TBI) patients may be bed-ridden and immobile for a very long-time. These conditions lead to secondary complications such as bladder/bowel dysfunction, the formation of pressure ulcers (PUs), bacterial infections, etc. PUs are chronic wounds that fail to heal or heal very slowly, may require multiple treatment modalities, and pose a risk to develop further complications, such as sepsis and amputation. This review discusses the role of oxidative stress and reactive oxygen species (ROS) in the formation of PUs in patients with TBI and SCI. Decades of research suggest that ROS may be key players in mediating the formation of PUs. ROS levels are increased due to the accumulation of activated macrophages and neutrophils. Excessive ROS production from these cells overwhelms intrinsic antioxidant mechanisms. While short-term and moderate increases in ROS regulate signal transduction of various bioactive molecules; long-term and excessively elevated ROS can cause secondary tissue damage and further debilitating complications. This review discusses the role of ROS in PU development after SCI and TBI. We also review the completed and ongoing clinical trials in the management of PUs after SCI and TBI using different technologies and treatments, including antioxidants.
RESUMEN
Elevated basal insulin secretion under fasting conditions together with insufficient stimulated insulin release is an important hallmark of type 2 diabetes, but the mechanisms controlling basal insulin secretion remain unclear. Membrane rafts exist in pancreatic islet cells and spatially organize membrane ion channels and proteins controlling exocytosis, which may contribute to the regulation of insulin secretion. Membrane rafts (cholesterol and sphingolipid containing microdomains) were dramatically reduced in human type 2 diabetic and diabetic Goto-Kakizaki (GK) rat islets when compared with healthy islets. Oxidation of membrane cholesterol markedly reduced microdomain staining intensity in healthy human islets, but was without effect in type 2 diabetic islets. Intriguingly, oxidation of cholesterol affected glucose-stimulated insulin secretion only modestly, whereas basal insulin release was elevated. This was accompanied by increased intracellular Ca2+ spike frequency and Ca2+ influx and explained by enhanced single Ca2+ channel activity. These results suggest that the reduced presence of membrane rafts could contribute to the elevated basal insulin secretion seen in type 2 diabetes.
Asunto(s)
Membrana Celular/metabolismo , Colesterol/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Animales , Calcio/metabolismo , Canales de Calcio/metabolismo , Exocitosis/fisiología , Femenino , Glucosa/metabolismo , Islotes Pancreáticos/metabolismo , Masculino , Microdominios de Membrana/metabolismo , Oxidación-Reducción , Ratas , Ratas WistarRESUMEN
BACKGROUND/AIMS: Gluco-incretin hormones increase the glucose competence of pancreatic beta-cells by incompletely characterized mechanisms. METHODS: We searched for genes that were differentially expressed in islets from control and Glp1r-/-; Gipr-/- (dKO) mice, which show reduced glucose competence. Overexpression and knockdown studies; insulin secretion analysis; analysis of gene expression in islets from control and diabetic mice and humans as well as gene methylation and transcriptional analysis were performed. RESULTS: Fxyd3 was the most up-regulated gene in glucose incompetent islets from dKO mice. When overexpressed in beta-cells Fxyd3 reduced glucose-induced insulin secretion by acting downstream of plasma membrane depolarization and Ca++ influx. Fxyd3 expression was not acutely regulated by cAMP raising agents in either control or dKO adult islets. Instead, expression of Fxyd3 was controlled by methylation of CpGs present in its proximal promoter region. Increased promoter methylation reduced Fxyd3 transcription as assessed by lower abundance of H3K4me3 at the transcriptional start site and in transcription reporter assays. This epigenetic imprinting was initiated perinatally and fully established in adult islets. Glucose incompetent islets from diabetic mice and humans showed increased expression of Fxyd3 and reduced promoter methylation. CONCLUSIONS/INTERPRETATION: Because gluco-incretin secretion depends on feeding the epigenetic regulation of Fxyd3 expression may link nutrition in early life to establishment of adult beta-cell glucose competence; this epigenetic control is, however, lost in diabetes possibly as a result of gluco-incretin resistance and/or de-differentiation of beta-cells that are associated with the development of type 2 diabetes.
Asunto(s)
Epigénesis Genética/efectos de los fármacos , Glucosa/metabolismo , Incretinas/farmacología , Células Secretoras de Insulina/efectos de los fármacos , Proteínas de la Membrana/genética , Proteínas de Neoplasias/genética , Animales , Animales Recién Nacidos , Células Cultivadas , Metilación de ADN/efectos de los fármacos , Ingestión de Alimentos/fisiología , Silenciador del Gen/efectos de los fármacos , Humanos , Incretinas/metabolismo , Células Secretoras de Insulina/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Neoplasias/metabolismo , Regiones Promotoras Genéticas/efectos de los fármacosRESUMEN
Type 2 diabetes is triggered by reduced insulin production, caused by genetic and environmental factors such as inflammation originating from the innate immune system. Complement proteins are a component of innate immunity and kill non-self cells by perforating the plasma membrane, a reaction prevented by CD59. Human pancreatic islets express CD59 at very high levels. CD59 is primarily known as a plasma membrane protein in membrane rafts, but most CD59 protein in pancreatic ß cells is intracellular. Removing extracellular CD59 disrupts membrane rafts and moderately stimulates insulin secretion, whereas silencing intracellular CD59 markedly suppresses regulated secretion by exocytosis, as demonstrated by TIRF imaging. CD59 interacts with the exocytotic proteins VAMP2 and Syntaxin-1. CD59 expression is reduced by glucose and in rodent diabetes models but upregulated in human diabetic islets, potentially reflecting compensatory reactions. This unconventional action of CD59 broadens the established view of innate immunity in type 2 diabetes.
Asunto(s)
Antígenos CD59/metabolismo , Proteínas del Sistema Complemento/metabolismo , Exocitosis/fisiología , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Animales , Membrana Celular/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Glucosa/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Ratones , Ratas , Ratas Endogámicas BB , Ratas Wistar , Sintaxina 1/metabolismo , Proteína 2 de Membrana Asociada a Vesículas/metabolismoRESUMEN
BACKGROUND: Impaired neuronal plasticity and, specifically, altered expression of brain-derived neurotrophic factor (BDNF) were shown to play a critical role in depressive behavior and the mechanism of various antidepressant treatments including electroconvulsive therapy (ECT). Interestingly, opposing roles were suggested for BDNF in the hippocampus and the ventral tegmental area (VTA), while interactions between these regions were shown on various levels. Here, we evaluated whether BDNF plays an essential role in the antidepressant-like effects of ECT and performed a direct comparison between BDNF manipulations in the VTA and the hippocampus. METHODS: Knockdown or overexpression of BDNF was induced in hippocampus or VTA of rats by microinjection of specific lentiviral vectors. The effects of these manipulations on antidepressant outcomes of ECT were evaluated by the forced swim test and by sucrose preference measurements, and BDNF expression levels were assessed in other reward-related brain regions. RESULTS: Here, we show that whereas ECT increased hippocampal BDNF expression, induction of hippocampal BDNF knockdown did not block its antidepressant-like effect. Importantly, we found that ECT caused a robust reduction in VTA BDNF levels. Moreover, VTA BDNF knockdown alone was sufficient to induce an antidepressant-like effect, and VTA BDNF overexpression blocked the antidepressant-like effect of ECT. CONCLUSIONS: While neuroplastic alterations, as expressed by changes in BDNF expression within different brain regions, are induced by ECT, the antidepressant-like effect of ECT in an animal model depends on reduction of VTA BDNF expression but not on the elevation of hippocampal BDNF expression.
Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Terapia Electroconvulsiva , Hipocampo/metabolismo , Área Tegmental Ventral/metabolismo , Animales , Masculino , Ratas , Ratas Sprague-DawleyRESUMEN
Inappropriate surface expression of voltage-gated Ca(2+)channels (CaV) in pancreatic ß-cells may contribute to the development of type 2 diabetes. First, failure to increase intracellular Ca(2+) concentrations at the sites of exocytosis impedes insulin release. Furthermore, excessive Ca(2+) influx may trigger cytotoxic effects. The regulation of surface expression of CaV channels in the pancreatic ß-cells remains unknown. Here, we used real-time 3D confocal and TIRFM imaging, immunocytochemistry, cellular fractionation, immunoprecipitation and electrophysiology to study trafficking of L-type CaV1.2 channels upon ß-cell stimulation. We found decreased surface expression of CaV1.2 and a corresponding reduction in L-type whole-cell Ca(2+) currents in insulin-secreting INS-1 832/13 cells upon protracted (15-30 min) stimulation. This internalization occurs by clathrin-dependent endocytosis and could be prevented by microtubule or dynamin inhibitors. eIF3e (Eukaryotic translation initiation factor 3 subunit E) is part of the protein translation initiation complex, but its effect on translation are modest and effects in ion channel trafficking have been suggested. The factor interacted with CaV1.2 and regulated CaV1.2 traffic bidirectionally. eIF3e silencing impaired CaV1.2 internalization, which resulted in an increased intracellular Ca(2+) load upon stimulation. These findings provide a mechanism for regulation of L-type CaV channel surface expression with consequences for ß-cell calcium homeostasis, which will affect pancreatic ß-cell function and insulin production.
Asunto(s)
Canales de Calcio Tipo L/metabolismo , Calcio/metabolismo , Factor 3 de Iniciación Eucariótica/metabolismo , Regulación de la Expresión Génica , Homeostasis , Espacio Intracelular/metabolismo , Subunidades de Proteína/metabolismo , Animales , Línea Celular , Endocitosis/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Glucosa/farmacología , Homeostasis/efectos de los fármacos , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/citología , Espacio Intracelular/efectos de los fármacos , Imagen Molecular , Transporte de Proteínas/efectos de los fármacos , RatasRESUMEN
Several common genetic variations have been associated with type 2 diabetes, but the exact disease mechanisms are still poorly elucidated. Using congenic strains from the diabetic Goto-Kakizaki rat, we identified a 1.4-megabase genomic locus that was linked to impaired insulin granule docking at the plasma membrane and reduced beta cell exocytosis. In this locus, Adra2a, encoding the alpha2A-adrenergic receptor [alpha(2A)AR], was significantly overexpressed. Alpha(2A)AR mediates adrenergic suppression of insulin secretion. Pharmacological receptor antagonism, silencing of receptor expression, or blockade of downstream effectors rescued insulin secretion in congenic islets. Furthermore, we identified a single-nucleotide polymorphism in the human ADRA2A gene for which risk allele carriers exhibited overexpression of alpha(2A)AR, reduced insulin secretion, and increased type 2 diabetes risk. Human pancreatic islets from risk allele carriers exhibited reduced granule docking and secreted less insulin in response to glucose; both effects were counteracted by pharmacological alpha(2A)AR antagonists.