Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
BMC Biol ; 21(1): 21, 2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36737754

RESUMEN

BACKGROUND: In a range of human disorders such as multiple myeloma (MM), immunoglobulin light chains (IgLCs) can be produced at very high concentrations. This can lead to pathological aggregation and deposition of IgLCs in different tissues, which in turn leads to severe and potentially fatal organ damage. However, IgLCs can also be highly soluble and non-toxic. It is generally thought that the cause for this differential solubility behaviour is solely found within the IgLC amino acid sequences, and a variety of individual sequence-related biophysical properties (e.g. thermal stability, dimerisation) have been proposed in different studies as major determinants of the aggregation in vivo. Here, we investigate biophysical properties underlying IgLC amyloidogenicity. RESULTS: We introduce a novel and systematic workflow, Thermodynamic and Aggregation Fingerprinting (ThAgg-Fip), for detailed biophysical characterisation, and apply it to nine different MM patient-derived IgLCs. Our set of pathogenic IgLCs spans the entire range of values in those parameters previously proposed to define in vivo amyloidogenicity; however, none actually forms amyloid in patients. Even more surprisingly, we were able to show that all our IgLCs are able to form amyloid fibrils readily in vitro under the influence of proteolytic cleavage by co-purified cathepsins. CONCLUSIONS: We show that (I) in vivo aggregation behaviour is unlikely to be mechanistically linked to any single biophysical or biochemical parameter and (II) amyloidogenic potential is widespread in IgLC sequences and is not confined to those sequences that form amyloid fibrils in patients. Our findings suggest that protein sequence, environmental conditions and presence and action of proteases all determine the ability of light chains to form amyloid fibrils in patients.


Asunto(s)
Cadenas Ligeras de Inmunoglobulina , Mieloma Múltiple , Humanos , Cadenas Ligeras de Inmunoglobulina/química , Cadenas Ligeras de Inmunoglobulina/metabolismo , Amiloide/metabolismo , Secuencia de Aminoácidos , Proteolisis
2.
Biophys J ; 122(2): 269-278, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36529991

RESUMEN

A significant feature of Alzheimer's disease is the formation of amyloid deposits in the brain consisting mainly of misfolded derivatives of proteolytic cleavage products of the amyloid precursor protein amyloid-ß (Aß) peptide. While high-resolution structures already exist for both the monomer and the amyloid fibril of the Aß peptide, the mechanism of amyloid formation itself still defies precise characterization. In this study, low and high molecular weight oligomers (LMWOs and HMWOs) were identified by sedimentation velocity analysis, and for the first time, the temporal evolution of oligomer size distributions was correlated with the kinetics of amyloid formation as determined by thioflavin T-binding studies. LMWOs of subnucleus size contain fewer than seven monomer units and exist alongside a heterogeneous group of HMWOs with 20-160 monomer units that represent potential centers of nucleus formation due to high local monomer concentrations. These HMWOs already have slightly increased ß-strand content and appear structurally similar regardless of size, as shown by examination with a range of fluorescent dyes. Once fibril nuclei are formed, the monomer concentration begins to decrease, followed by a decrease in oligomer concentration, starting with LMWOs, which are the least stable species. The observed behavior classifies the two LMWOs as off pathway. In contrast, we consider HMWOs to be on-pathway, prefibrillar intermediates, representing structures in which nucleated conformational conversion is facilitated by high local concentrations. Aß40 and Aß42 M35ox take much longer to form nuclei and enter the growth phase than Aß42 under identical reaction conditions, presumably because both the size and the concentration of HMWOs formed are much smaller.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Humanos , Péptidos beta-Amiloides/química , Pliegue de Proteína , Fragmentos de Péptidos/química , Enfermedad de Alzheimer/metabolismo , Amiloide/metabolismo
3.
J Biol Chem ; 298(10): 102430, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36037966

RESUMEN

Methionine/valine polymorphism at position 129 of the human prion protein, huPrP, is tightly associated with the pathogenic phenotype, disease progress, and age of onset of neurodegenerative diseases such as Creutzfeldt-Jakob disease or Fatal Familial Insomnia. This raises the question of whether and how the amino acid type at position 129 influences the structural properties of huPrP, affecting its folding, stability, and amyloid formation behavior. Here, our detailed biophysical characterization of the 129M and 129V variants of recombinant full-length huPrP(23-230) by amyloid formation kinetics, CD spectroscopy, molecular dynamics simulations, and sedimentation velocity analysis reveals differences in their aggregation propensity and oligomer content, leading to deviating pathways for the conversion into amyloid at acidic pH. We determined that the 129M variant exhibits less secondary structure content before amyloid formation and higher resistance to thermal denaturation compared to the 129V variant, whereas the amyloid conformation of both variants shows similar thermal stability. Additionally, our molecular dynamics simulations and rigidity analyses at the atomistic level identify intramolecular interactions responsible for the enhanced monomer stability of the 129M variant, involving more frequent minimum distances between E196 and R156, forming a salt bridge. Removal of the N-terminal half of the 129M full-length variant diminishes its differences compared to the 129V full-length variant and highlights the relevance of the flexible N terminus in huPrP. Taken together, our findings provide insight into structural properties of huPrP and the effects of the amino acid identity at position 129 on amyloid formation behavior.


Asunto(s)
Amiloide , Amiloidosis , Síndrome de Creutzfeldt-Jakob , Insomnio Familiar Fatal , Polimorfismo Genético , Proteínas Priónicas , Humanos , Amiloide/genética , Amiloide/química , Amiloidosis/genética , Síndrome de Creutzfeldt-Jakob/genética , Metionina/genética , Proteínas Priónicas/química , Proteínas Priónicas/genética , Pliegue de Proteína , Valina/genética , Insomnio Familiar Fatal/genética
4.
Nucleic Acids Res ; 49(11): 6437-6455, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-34096600

RESUMEN

The biogenesis of small uridine-rich nuclear ribonucleoproteins (UsnRNPs) depends on the methylation of Sm proteins catalyzed by the methylosome and the subsequent action of the SMN complex, which assembles the heptameric Sm protein ring onto small nuclear RNAs (snRNAs). In this sophisticated process, the methylosome subunit pICln (chloride conductance regulatory protein) is attributed to an exceptional key position as an 'assembly chaperone' by building up a stable precursor Sm protein ring structure. Here, we show that-apart from its autophagic role-the Ser/Thr kinase ULK1 (Uncoordinated [unc-51] Like Kinase 1) functions as a novel key regulator in UsnRNP biogenesis by phosphorylation of the C-terminus of pICln. As a consequence, phosphorylated pICln is no longer capable to hold up the precursor Sm ring structure. Consequently, inhibition of ULK1 results in a reduction of efficient UsnRNP core assembly. Thus ULK1, depending on its complex formation, exerts different functions in autophagy or snRNP biosynthesis.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/biosíntesis , Homólogo de la Proteína 1 Relacionada con la Autofagia/antagonistas & inhibidores , Homólogo de la Proteína 1 Relacionada con la Autofagia/fisiología , Línea Celular , Cuerpos Enrollados , Humanos , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/fisiología , Canales Iónicos/metabolismo , Fosforilación , Proteína-Arginina N-Metiltransferasas/metabolismo
5.
Plant Cell ; 31(10): 2525-2539, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31363039

RESUMEN

Evolution of the C4 photosynthetic pathway involved in some cases recruitment of housekeeping proteins through gene duplication and their further neofunctionalization. NADP-malic enzyme (ME), the most widespread C4 decarboxylase, has increased its catalytic efficiency and acquired regulatory properties that allowed it to participate in the C4 pathway. Here, we show that regulation of maize (Zea mays) C4-NADP-ME activity is much more elaborate than previously thought. Using mass spectrometry, we identified phosphorylation of the Ser419 residue of C4-NADP-ME in protein extracts of maize leaves. The phosphorylation event increases in the light, with a peak at Zeitgeber time 2. Phosphorylation of ZmC4-NADP-ME drastically decreases its activity as shown by the low residual activity of the recombinant phosphomimetic mutant. Analysis of the crystal structure of C4-NADP-ME indicated that Ser419 is involved in the binding of NADP at the active site. Molecular dynamics simulations and effective binding energy computations indicate a less favorable binding of the cofactor NADP in the phosphomimetic and the phosphorylated variants. We propose that phosphorylation of ZmC4-NADP-ME at Ser419 during the first hours in the light is a cellular mechanism that fine tunes the enzymatic activity to coordinate the carbon concentration mechanism with the CO2 fixation rate, probably to avoid CO2 leakiness from bundle sheath cells.


Asunto(s)
Malato Deshidrogenasa/química , Malato Deshidrogenasa/metabolismo , Fotosíntesis/fisiología , Hojas de la Planta/metabolismo , Zea mays/enzimología , Biomimética , Expresión Génica , Cinética , Luz , Malato Deshidrogenasa/genética , Espectrometría de Masas , Simulación de Dinámica Molecular , Mutación , NADP/química , NADP/metabolismo , Fosforilación/efectos de la radiación , Fotosíntesis/genética , Fotosíntesis/efectos de la radiación , Hojas de la Planta/química , Proteínas de Plantas/metabolismo , Procesamiento Proteico-Postraduccional/efectos de la radiación , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Zea mays/efectos de la radiación
6.
Blood ; 132(3): 307-320, 2018 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-29724897

RESUMEN

Heat shock protein 90 (HSP90) stabilizes many client proteins, including the BCR-ABL1 oncoprotein. BCR-ABL1 is the hallmark of chronic myeloid leukemia (CML) in which treatment-free remission (TFR) is limited, with clinical and economic consequences. Thus, there is an urgent need for novel therapeutics that synergize with current treatment approaches. Several inhibitors targeting the N-terminal domain of HSP90 are under investigation, but side effects such as induction of the heat shock response (HSR) and toxicity have so far precluded their US Food and Drug Administration approval. We have developed a novel inhibitor (aminoxyrone [AX]) of HSP90 function by targeting HSP90 dimerization via the C-terminal domain. This was achieved by structure-based molecular design, chemical synthesis, and functional preclinical in vitro and in vivo validation using CML cell lines and patient-derived CML cells. AX is a promising potential candidate that induces apoptosis in the leukemic stem cell fraction (CD34+CD38-) as well as the leukemic bulk (CD34+CD38+) of primary CML and in tyrosine kinase inhibitor (TKI)-resistant cells. Furthermore, BCR-ABL1 oncoprotein and related pro-oncogenic cellular responses are downregulated, and targeting the HSP90 C terminus by AX does not induce the HSR in vitro and in vivo. We also probed the potential of AX in other therapy-refractory leukemias. Therefore, AX is the first peptidomimetic C-terminal HSP90 inhibitor with the potential to increase TFR in TKI-sensitive and refractory CML patients and also offers a novel therapeutic option for patients with other types of therapy-refractory leukemia because of its low toxicity profile and lack of HSR.


Asunto(s)
Antineoplásicos/farmacología , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP90 de Choque Térmico/química , Respuesta al Choque Térmico/efectos de los fármacos , Mesilato de Imatinib/farmacología , Dominios y Motivos de Interacción de Proteínas , Inhibidores de Proteínas Quinasas/farmacología , Multimerización de Proteína , Animales , Antineoplásicos/química , Sitios de Unión , Biomarcadores de Tumor , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Resistencia a Antineoplásicos/efectos de los fármacos , Proteínas de Fusión bcr-abl/antagonistas & inhibidores , Proteínas de Fusión bcr-abl/química , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Mesilato de Imatinib/química , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Ratones , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Unión Proteica , Inhibidores de Proteínas Quinasas/química , Multimerización de Proteína/efectos de los fármacos , Análisis Espectral , Relación Estructura-Actividad , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Molecules ; 24(11)2019 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-31195746

RESUMEN

Amyloid-ß peptide (Aß) is an intrinsically disordered protein (IDP) associated with Alzheimer's disease. The structural flexibility and aggregation propensity of Aß pose major challenges for elucidating the interaction between Aß monomers and ligands. All-D-peptides consisting solely of D-enantiomeric amino acid residues are interesting drug candidates that combine high binding specificity with high metabolic stability. Here we characterized the interaction between the 12-residue all-D-peptide D3 and Aß42 monomers, and how the interaction influences Aß42 aggregation. We demonstrate for the first time that D3 binds to Aß42 monomers with submicromolar affinities. These two highly unstructured molecules are able to form complexes with 1:1 and other stoichiometries. Further, D3 at substoichiometric concentrations effectively slows down the ß-sheet formation and Aß42 fibrillation by modulating the nucleation process. The study provides new insights into the molecular mechanism of how D3 affects Aß assemblies and contributes to our knowledge on the interaction between two IDPs.


Asunto(s)
Péptidos beta-Amiloides/química , Área Bajo la Curva , Cinética , Ligandos , Simulación de Dinámica Molecular , Estructura Secundaria de Proteína
9.
J Biol Chem ; 292(23): 9583-9598, 2017 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-28438837

RESUMEN

Aggregation of specific proteins in the brains of patients with chronic mental illness as a result of disruptions in proteostasis is an emerging theme in the study of schizophrenia in particular. Proteins including DISC1 (disrupted in schizophrenia 1) and dysbindin-1B are found in insoluble forms within brain homogenates from such patients. We recently identified TRIOBP-1 (Trio-binding protein 1, also known as Tara) to be another such protein through an epitope discovery and proteomics approach by comparing post-mortem brain material from schizophrenia patients and control individuals. We hypothesized that this was likely to occur as a result of a specific subcellular process and that it, therefore, should be possible to identify a region of the TRIOBP-1 protein that is essential for its aggregation to occur. Here, we probe the domain organization of TRIOBP-1, finding it to possess two distinct coiled-coil domains: the central and C-terminal domains. The central domain inhibits the depolymerization of F-actin and is also responsible for oligomerization of TRIOBP-1. Along with an N-terminal pleckstrin homology domain, the central domain affects neurite outgrowth. In neuroblastoma cells it was found that the aggregation propensity of TRIOBP-1 arises from its central domain, with a short "linker" region narrowed to within amino acids 324-348, between its first two coiled coils, as essential for the formation of TRIOBP-1 aggregates. TRIOBP-1 aggregation, therefore, appears to occur through one or more specific cellular mechanisms, which therefore have the potential to be of physiological relevance for the biological process underlying the development of chronic mental illness.


Asunto(s)
Actinas , Proteínas de Microfilamentos , Agregación Patológica de Proteínas , Actinas/química , Actinas/genética , Actinas/metabolismo , Línea Celular Tumoral , Humanos , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Dominios Homólogos a Pleckstrina , Agregación Patológica de Proteínas/genética , Agregación Patológica de Proteínas/metabolismo
10.
J Biol Chem ; 292(16): 6468-6477, 2017 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-28249940

RESUMEN

Disrupted in Schizophrenia 1 (DISC1) is a scaffolding protein of significant importance for neurodevelopment and a prominent candidate protein in the pathology of major mental illness. DISC1 modulates a number of critical neuronal signaling pathways through protein-protein interactions; however, the mechanism by which this occurs and how DISC1 causes mental illness is unclear, partly because knowledge of the structure of DISC1 is lacking. A lack of homology with known proteins has hindered attempts to define its domain composition. Here, we employed the high-throughput Expression of Soluble Proteins by Random Incremental Truncation (ESPRIT) technique to identify discretely folded regions of human DISC1 via solubility assessment of tens of thousands of fragments of recombinant DISC1. We identified four novel structured regions, named D, I, S, and C, at amino acids 257-383, 539-655, 635-738, and 691-836, respectively. One region (D) is located in a DISC1 section previously predicted to be unstructured. All regions encompass coiled-coil or α-helical structures, and three are involved in DISC1 oligomerization. Crucially, three of these domains would be lost or disrupted by a chromosomal translocation event after amino acid 597, which has been strongly linked to major mental illness. Furthermore, we observed that a known illness-related frameshift mutation after amino acid 807 causes the C region to form aberrantly multimeric and aggregated complexes with an unstable secondary structure. This newly revealed domain architecture of DISC1, therefore, provides a powerful framework for understanding the critical role of this protein in a variety of devastating mental illnesses.


Asunto(s)
Mutación , Proteínas del Tejido Nervioso/química , Trastornos Psicóticos/genética , Esquizofrenia/genética , Mutación del Sistema de Lectura , Humanos , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Desnaturalización Proteica , Dominios Proteicos , Pliegue de Proteína , Mapeo de Interacción de Proteínas , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Transducción de Señal
11.
J Biol Chem ; 291(43): 22806-22818, 2016 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-27551038

RESUMEN

Chlamydiae sp. are obligate intracellular pathogens that cause a variety of diseases in humans. The adhesion of Chlamydiae to the eukaryotic host cell is a pivotal step in pathogenesis. The adhesin family of polymorphic membrane proteins (Pmp) in Chlamydia pneumoniae consists of 21 members. Pmp21 binds to the epidermal growth factor receptor (EGFR). Pmps contain large numbers of FXXN (where X is any amino acid) and GGA(I/L/V) motifs. At least two of these motifs are crucial for adhesion by certain Pmp21 fragments. Here we describe how the two FXXN motifs in Pmp21-D (D-Wt), a domain of Pmp21, influence its self-interaction, folding, and adhesive capacities. Refolded D-Wt molecules form oligomers with high sedimentation values (8-85 S). These oligomers take the form of elongated protofibrils, which exhibit Thioflavin T fluorescence, like the amyloid protein fragment ß42. A mutant version of Pmp21-D (D-Mt), with FXXN motifs replaced by SXXV, shows a markedly reduced capacity to form oligomers. Secondary-structure assays revealed that monomers of both variants exist predominantly as random coils, whereas the oligomers form predominantly ß-sheets. Adhesion studies revealed that oligomers of D-Wt (D-Wt-O) mediate significantly enhanced binding to human epithelial cells relative to D-Mt-O and monomeric protein species. Moreover, D-Wt-O binds EGFR more efficiently than D-Wt monomers. Importantly, pretreatment of human cells with D-Wt-O reduces infectivity upon subsequent challenge with C. pneumoniae more effectively than all other protein species. Hence, the FXXN motif in D-Wt induces the formation of ß-sheet-rich oligomeric protofibrils, which are important for adhesion to, and subsequent infection of human cells.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Chlamydophila pneumoniae/metabolismo , Multimerización de Proteína/fisiología , Adhesinas Bacterianas/genética , Secuencias de Aminoácidos , Sustitución de Aminoácidos , Proteínas de la Membrana Bacteriana Externa/genética , Chlamydophila pneumoniae/genética , Receptores ErbB/genética , Humanos , Mutación Missense , Unión Proteica
12.
Chembiochem ; 17(8): 657-76, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26910367

RESUMEN

The deposition of amyloid in brain tissue in the context of neurodegenerative diseases involves the formation of intermediate species-termed oligomers-of lower molecular mass and with structures that deviate from those of mature amyloid fibrils. Because these oligomers are thought to be primarily responsible for the subsequent disease pathogenesis, the elucidation of their structure is of enormous interest. Nevertheless, because of the high aggregation propensity and the polydispersity of oligomeric species formed by the proteins or peptides in question, the preparation of appropriate samples for high-resolution structural methods has proven to be rather difficult. This is why theoretical approaches have been of particular importance in gaining insights into possible oligomeric structures for some time. Only recently has it been possible to achieve some progress with regard to the experimentally based structural characterization of defined oligomeric species. Here we discuss how theory and experiment are used to determine oligomer structures and what can be done to improve the integration of the two disciplines.


Asunto(s)
Amiloide/química , Simulación de Dinámica Molecular , Amiloide/metabolismo , Humanos , Enfermedades Neurodegenerativas/metabolismo , Unión Proteica , Conformación Proteica
13.
J Biol Chem ; 289(1): 74-88, 2014 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-24273164

RESUMEN

The cancer-associated, centrosomal adaptor protein TACC3 (transforming acidic coiled-coil 3) and its direct effector, the microtubule polymerase chTOG (colonic and hepatic tumor overexpressed gene), play a crucial function in centrosome-driven mitotic spindle assembly. It is unclear how TACC3 interacts with chTOG. Here, we show that the C-terminal TACC domain of TACC3 and a C-terminal fragment adjacent to the TOG domains of chTOG mediate the interaction between these two proteins. Interestingly, the TACC domain consists of two functionally distinct subdomains, CC1 (amino acids (aa) 414-530) and CC2 (aa 530-630). Whereas CC1 is responsible for the interaction with chTOG, CC2 performs an intradomain interaction with the central repeat region of TACC3, thereby masking the TACC domain before effector binding. Contrary to previous findings, our data clearly demonstrate that Aurora-A kinase does not regulate TACC3-chTOG complex formation, indicating that Aurora-A solely functions as a recruitment factor for the TACC3-chTOG complex to centrosomes and proximal mitotic spindles. We identified with CC1 and CC2, two functionally diverse modules within the TACC domain of TACC3 that modulate and mediate, respectively, TACC3 interaction with chTOG required for spindle assembly and microtubule dynamics during mitotic cell division.


Asunto(s)
Aurora Quinasa A/metabolismo , Proteínas Portadoras/metabolismo , Centrosoma/metabolismo , Proteínas Fetales/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Mitosis/fisiología , Animales , Aurora Quinasa A/genética , Proteínas Portadoras/genética , Proteínas Fetales/genética , Células HEK293 , Células HeLa , Humanos , Ratones , Proteínas Asociadas a Microtúbulos/genética , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Unión Proteica/fisiología , Estructura Terciaria de Proteína
14.
Nucleic Acids Res ; 41(12): 6347-59, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23625968

RESUMEN

The adaptive immunity of bacteria against foreign nucleic acids, mediated by CRISPR (clustered regularly interspaced short palindromic repeats), relies on the specific incorporation of short pieces of the invading foreign DNA into a special genomic locus, termed CRISPR array. The stored sequences (spacers) are subsequently used in the form of small RNAs (crRNAs) to interfere with the target nucleic acid. We explored the DNA-binding mechanism of the immunization protein Csn2 from the human pathogen Streptococcus agalactiae using different biochemical techniques, atomic force microscopic imaging and molecular dynamics simulations. The results demonstrate that the ring-shaped Csn2 tetramer binds DNA ends through its central hole and slides inward, likely by a screw motion along the helical path of the enclosed DNA. The presented data indicate an accessory function of Csn2 during integration of exogenous DNA by end-joining.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de Unión al ADN/química , ADN/química , Proteínas Bacterianas/metabolismo , Calcio/metabolismo , ADN/metabolismo , ADN/ultraestructura , Proteínas de Unión al ADN/metabolismo , Microscopía de Fuerza Atómica , Simulación de Dinámica Molecular , Movimiento (Física) , Unión Proteica , Streptococcus agalactiae
15.
J Biol Chem ; 288(52): 37104-11, 2013 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-24247242

RESUMEN

The interconversion of monomers, oligomers, and amyloid fibrils of the amyloid-ß peptide (Aß) has been implicated in the pathogenesis of Alzheimer disease. The determination of the kinetics of the individual association and dissociation reactions is hampered by the fact that forward and reverse reactions to/from different aggregation states occur simultaneously. Here, we report the kinetics of dissociation of Aß monomers from protofibrils, prefibrillar high molecular weight oligomers previously shown to possess pronounced neurotoxicity. An engineered binding protein sequestering specifically monomeric Aß was employed to follow protofibril dissociation by tryptophan fluorescence, precluding confounding effects of reverse or competing reactions. Aß protofibril dissociation into monomers follows exponential decay kinetics with a time constant of ∼2 h at 25 °C and an activation energy of 80 kJ/mol, values typical for high affinity biomolecular interactions. This study demonstrates the high kinetic stability of Aß protofibrils toward dissociation into monomers and supports the delineation of the Aß folding and assembly energy landscape.


Asunto(s)
Péptidos beta-Amiloides/química , Complejos Multiproteicos/química , Pliegue de Proteína , Multimerización de Proteína , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Humanos , Cinética , Complejos Multiproteicos/metabolismo , Estabilidad Proteica
16.
J Biol Chem ; 287(41): 34786-800, 2012 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-22891248

RESUMEN

Increasing evidence implicates Aß peptides self-assembly and fibril formation as crucial events in the pathogenesis of Alzheimer disease. Thus, inhibiting Aß aggregation, among others, has emerged as a potential therapeutic intervention for this disorder. Herein, we employed 3-aminopyrazole as a key fragment in our design of non-dye compounds capable of interacting with Aß42 via a donor-acceptor-donor hydrogen bond pattern complementary to that of the ß-sheet conformation of Aß42. The initial design of the compounds was based on connecting two 3-aminopyrazole moieties via a linker to identify suitable scaffold molecules. Additional aryl substitutions on the two 3-aminopyrazole moieties were also explored to enhance π-π stacking/hydrophobic interactions with amino acids of Aß42. The efficacy of these compounds on inhibiting Aß fibril formation and toxicity in vitro was assessed using a combination of biophysical techniques and viability assays. Using structure activity relationship data from the in vitro assays, we identified compounds capable of preventing pathological self-assembly of Aß42 leading to decreased cell toxicity.


Asunto(s)
Péptidos beta-Amiloides/antagonistas & inhibidores , Péptidos beta-Amiloides/química , Fragmentos de Péptidos/antagonistas & inhibidores , Fragmentos de Péptidos/química , Pirazoles/química , Línea Celular Tumoral , Citotoxinas/antagonistas & inhibidores , Citotoxinas/química , Humanos , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Estructura Secundaria de Proteína , Relación Estructura-Actividad
17.
Biol Chem ; 394(11): 1411-23, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23787465

RESUMEN

During the mitotic division cycle, cells pass through an extensive microtubule rearrangement process where microtubules forming the mitotic spindle apparatus are dynamically instable. Several centrosomal- and microtubule-associated proteins are involved in the regulation of microtubule dynamics and stability during mitosis. Here, we focus on members of the transforming acidic coiled coil (TACC) family of centrosomal adaptor proteins, in particular TACC3, in which their subcellular localization at the mitotic spindle apparatus is controlled by Aurora-A kinase-mediated phosphorylation. At the effector level, several TACC-binding partners have been identified and characterized in greater detail, in particular, the microtubule polymerase XMAP215/ch-TOG/CKAP5 and clathrin heavy chain (CHC). We summarize the recent progress in the molecular understanding of these TACC3 protein complexes, which are crucial for proper mitotic spindle assembly and dynamics to prevent faulty cell division and aneuploidy. In this regard, the (patho)biological role of TACC3 in development and cancer will be discussed.


Asunto(s)
Complejo 3 de Proteína Adaptadora/química , Centrosoma/química , Proteínas Asociadas a Microtúbulos/química , Mitosis , Complejo 3 de Proteína Adaptadora/genética , Complejo 3 de Proteína Adaptadora/fisiología , Animales , División Celular/genética , Centrosoma/patología , Centrosoma/fisiología , Humanos , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/fisiología , Mitosis/genética , Familia de Multigenes/genética , Estructura Terciaria de Proteína/genética , Huso Acromático/genética
18.
Biol Chem ; 394(11): 1399-410, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23950574

RESUMEN

In a variety of normal and pathological cell types, Rho-kinases I and II (ROCKI/II) play a pivotal role in the organization of the nonmuscle and smooth muscle cytoskeleton and adhesion plaques as well as in the regulation of transcription factors. Thus, ROCKI/II activity regulates cellular contraction, motility, morphology, polarity, cell division, and gene expression. Emerging evidence suggests that dysregulation of the Rho-ROCK pathways at different stages is linked to cardiovascular, metabolic, and neurodegenerative diseases as well as cancer. This review focuses on the current status of understanding the multiple functions of Rho-ROCK signaling pathways and various modes of regulation of Rho-ROCK activity, thereby orchestrating a concerted functional response.


Asunto(s)
Quinasas Asociadas a rho/antagonistas & inhibidores , Quinasas Asociadas a rho/metabolismo , Animales , Apoptosis/genética , Apoptosis/fisiología , Proliferación Celular , Regulación hacia Abajo/genética , Regulación hacia Abajo/fisiología , Regulación Enzimológica de la Expresión Génica/genética , Regulación Enzimológica de la Expresión Génica/fisiología , Humanos , Óxido Nítrico Sintasa de Tipo III/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fosforilación/genética , Fosforilación/fisiología , Estabilidad Proteica , Transducción de Señal/genética , Transducción de Señal/fisiología , Proteínas de Unión al GTP rho/fisiología , Quinasas Asociadas a rho/fisiología , Proteína de Unión al GTP rhoA/fisiología , Proteína de Unión al GTP rhoB/fisiología , Proteína rhoC de Unión a GTP
19.
J Biol Chem ; 286(16): 13966-76, 2011 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-21343310

RESUMEN

Synthetic peptide immunogens that mimic the conformation of a target epitope of pathological relevance offer the possibility to precisely control the immune response specificity. Here, we performed conformational analyses using a panel of peptides in order to investigate the key parameters controlling their conformation upon integration into liposomal bilayers. These revealed that the peptide lipidation pattern, the lipid anchor chain length, and the liposome surface charge all significantly alter peptide conformation. Peptide aggregation could also be modulated post-liposome assembly by the addition of distinct small molecule ß-sheet breakers. Immunization of both mice and monkeys with a model liposomal vaccine containing ß-sheet aggregated lipopeptide (Palm1-15) induced polyclonal IgG antibodies that specifically recognized ß-sheet multimers over monomer or non-pathological native protein. The rational design of liposome-bound peptide immunogens with defined conformation opens up the possibility to generate vaccines against a range of protein misfolding diseases, such as Alzheimer disease.


Asunto(s)
Liposomas/química , Péptidos/química , Deficiencias en la Proteostasis/metabolismo , Vacunas/química , Enfermedad de Alzheimer/metabolismo , Animales , Benzotiazoles , Dicroismo Circular , Femenino , Humanos , Inmunoglobulina G/química , Espectroscopía de Resonancia Magnética , Ratones , Ratones Endogámicos C57BL , Conformación Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Tiazoles/química
20.
Sci Rep ; 12(1): 14158, 2022 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-35986043

RESUMEN

Acute myeloid leukemia (AML) is a malignant disease of immature myeloid cells and the most prevalent acute leukemia among adults. The oncogenic homo-tetrameric fusion protein RUNX1/ETO results from the chromosomal translocation t(8;21) and is found in AML patients. The nervy homology region 2 (NHR2) domain of ETO mediates tetramerization; this oligomerization is essential for oncogenic activity. Previously, we identified the first-in-class small-molecule inhibitor of NHR2 tetramer formation, 7.44, which was shown to specifically interfere with NHR2, restore gene expression down-regulated by RUNX1/ETO, inhibit the proliferation of RUNX1/ETO-depending SKNO-1 cells, and reduce the RUNX1/ETO-related tumor growth in a mouse model. However, no biophysical and structural characterization of 7.44 binding to the NHR2 domain has been reported. Likewise, the compound has not been characterized as to physicochemical, pharmacokinetic, and toxicological properties. Here, we characterize the interaction between the NHR2 domain of RUNX1/ETO and 7.44 by biophysical assays and show that 7.44 interferes with NHR2 tetramer stability and leads to an increase in the dimer population of NHR2. The affinity of 7.44 with respect to binding to NHR2 is Klig = 3.75 ± 1.22 µM. By NMR spectroscopy combined with molecular dynamics simulations, we show that 7.44 binds with both heteroaromatic moieties to NHR2 and interacts with or leads to conformational changes in the N-termini of the NHR2 tetramer. Finally, we demonstrate that 7.44 has favorable physicochemical, pharmacokinetic, and toxicological properties. Together with biochemical, cellular, and in vivo assessments, the results reveal 7.44 as a lead for further optimization towards targeted therapy of t(8;21) AML.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal , Leucemia Mieloide Aguda , Animales , Cromosomas Humanos Par 21 , Cromosomas Humanos Par 8/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Ratones , Proteínas de Fusión Oncogénica/metabolismo , Translocación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA