Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Vis Impair Blind ; 113(3): 235-247, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33828348

RESUMEN

INTRODUCTION: The modern long cane has been used by people who are blind for traveling for decades. This article describes parameters surrounding the collection of over 10,000 trials of people walking with the long cane to detect drop-offs or obstacles. METHODS: The data include 10,069 trials representing 101 different participants in 366 conditions over 11 studies spanning the 9 years from 2007 to 2016. Each of the studies investigated different participant or cane characteristics or both in terms of their effect on either drop-off or obstacle detection. Results of detection performance in these studies appear in other articles. This article describes biomechanical measures derived from 3-D motion analysis equipment used during the studies. RESULTS: Initial treatment of the large data set indicated that participants tended to not center their cane arc laterally on their body, deviating up to about 20 centimeters from midline. Arc widths averaged almost a meter, and arcs were generally centered. Participants were generally poor at being in step or having consistent rhythm. Coverage rates averaged about 85%. DISCUSSION: Although participants might have demonstrated artificially high skill performance due to being in a research study, data do offer insights into mechanical performance of skills. This survey of the data set indicates that not centering the hand holding the cane does not decrease body coverage less than about 85%. However, further analyses will be conducted to delve more deeply into all aspects of the data. IMPLICATIONS FOR PRACTITIONERS: Basic cane skills can be taught with short sessions and massed practice. Novices can acquire basic cane skills on par with cane users who are blind, but individual differences exist and the interplay of biomechanical variables needs to more fully understood.

2.
Ergonomics ; 60(1): 59-68, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27065052

RESUMEN

Most travellers who are blind rely on a long cane to detect drop-offs on their walking paths. We examined how different cane shaft materials affect drop-off detection performance through providing different vibrotactile and proprioceptive feedbacks to the cane user. Results of the study showed a significant interaction between cane shaft weight and how the cane is used. A heavier cane was advantageous for detecting drop-offs when the individual used the 'constant contact technique' - cane tip stays in contact with the walking surface at all times - but not when he used the 'two-point touch technique' - cane tip is rhythmically tapped on the surface. In addition, a more flexible cane was advantageous for detecting drop-offs when the two-point touch technique was used but not when the constant contact technique was used. It is recommended that, when blind individuals select a cane shaft material, they consider which long cane technique they use more often. Practitioner Summary: Long cane shaft material affects how well a blind individual can detect drop-offs. A heavier shaft was advantageous when using the constant contact technique (cane tip stays in continuous contact with the surface), while a more flexible shaft was better when using the two-point touch technique (cane tip rhythmically taps the surface).


Asunto(s)
Ceguera/rehabilitación , Bastones , Diseño de Equipo , Propiocepción , Vibración , Adulto , Anciano , Fenómenos Biomecánicos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Dispositivos de Autoayuda , Caminata , Adulto Joven
3.
Transp Res Part F Traffic Psychol Behav ; 14(2): 117-127, 2011 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-21379367

RESUMEN

The increasing number of hybrid and quiet internal combustion engine vehicles may impact the travel abilities of pedestrians who are blind. Pedestrians who rely on auditory cues for structuring their travel may face challenges in making crossing decisions in the presence of quiet vehicles. This article describes results of initial studies looking at the crossing decisions of pedestrians who are blind at an uncontrolled crossing (no traffic control) and a light controlled intersection. The presence of hybrid vehicles was a factor in each situation. At the uncontrolled crossing, Toyota hybrids were most difficult to detect but crossing decisions were made more often in small gaps ended by a Honda hybrid. These effects were seen only at speed under 20 mph. At the light controlled intersection, parallel surges of traffic were most difficult to detect when made up only of a Ford Escape hybrid. Results suggest that more controlled studies of vehicle characteristics impacting crossing decisions of pedestrians who are blind are warranted.

4.
Br J Vis Impair ; 35(3): 217-231, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29276326

RESUMEN

A repeated-measures design with block randomization was used for the study, in which 15 adults with visual impairments attempted to detect the drop-offs and obstacles with the canes of different lengths, swinging the cane in different widths (narrow vs wide). Participants detected the drop-offs significantly more reliably with the standard-length cane (79.5% ± 6.5% of the time) than with the extended-length cane (67.6% ± 9.1%), p <.001. The drop-off detection threshold of the standard-length cane (4.1 ± 1.1 cm) was also significantly smaller than that of the extended-length cane (6.5±1.8cm), p <.001. In addition, participants detected drop-offs at a significantly higher percentage when they swung the cane approximately 3 cm beyond the widest part of the body (78.6% ± 7.6%) than when they swung it substantially wider (30 cm; 68.5% ± 8.3%), p <.001. In contrast, neither cane length (p =.074) nor cane swing arc width (p =.185) had a significant effect on obstacle detection performance. The findings of the study may help orientation and mobility specialists recommend appropriate cane length and cane swing arc width to visually impaired cane users.

5.
Sci Total Environ ; 599-600: 1191-1201, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28514837

RESUMEN

Continuous and intermittent noise may have different effects on humans and wildlife, therefore distinguishing temporal patterns of noise and their drivers is important for policy regarding both public health and wildlife management. We visualized patterns and explored land-use drivers of continuous and high-amplitude intermittent sound pressure levels (SPLs) on an urban campus in Michigan, U.S.A. To visualize patterns of SPLs, we introduce decibel duration curves (DDCs), which show the cumulative frequency distribution of SPLs and aid in the interpretation of statistical SPLs (Ln values) that reflect continuous versus intermittent sounds. DDCs and Ln values reveal that our 24 recording locations varied in the intensity of both continuous and intermittent noise, with intermittent high-amplitude sound events in particular contributing to variability in SPLs over the study site. Time of day influenced both continuous and intermittent SPLs, as locations relatively close to manmade structures (buildings, roads and parking lots) experienced higher SPLs as the day progressed. Continuous SPLs increased with decreasing distance to manmade structures, whereas intermittent SPLs increased with decreasing distance to roads and increasing distance to buildings. Thus, different land-use factors influenced patterns of continuous and intermittent noise, which suggests that different policy and strategies may be needed to ameliorate their effects on the public and wildlife.

6.
PLoS One ; 11(7): e0159883, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27467503

RESUMEN

Animals select and use habitats based on environmental features relevant to their ecology and behavior. For animals that use acoustic communication, the sound environment itself may be a critical feature, yet acoustic characteristics are not commonly measured when describing habitats and as a result, how habitats vary acoustically over space and time is poorly known. Such considerations are timely, given worldwide increases in anthropogenic noise combined with rapidly accumulating evidence that noise hampers the ability of animals to detect and interpret natural sounds. Here, we used microphone arrays to record the sound environment in three terrestrial habitats (forest, prairie, and urban) under ambient conditions and during experimental noise introductions. We mapped sound pressure levels (SPLs) over spatial scales relevant to diverse taxa to explore spatial variation in acoustic habitats and to evaluate the number of microphones needed within arrays to capture this variation under both ambient and noisy conditions. Even at small spatial scales and over relatively short time spans, SPLs varied considerably, especially in forest and urban habitats, suggesting that quantifying and mapping acoustic features could improve habitat descriptions. Subset maps based on input from 4, 8, 12 and 16 microphones differed slightly (< 2 dBA/pixel) from those based on full arrays of 24 microphones under ambient conditions across habitats. Map differences were more pronounced with noise introductions, particularly in forests; maps made from only 4-microphones differed more (> 4 dBA/pixel) from full maps than the remaining subset maps, but maps with input from eight microphones resulted in smaller differences. Thus, acoustic environments varied over small spatial scales and variation could be mapped with input from 4-8 microphones. Mapping sound in different environments will improve understanding of acoustic environments and allow us to explore the influence of spatial variation in sound on animal ecology and behavior.


Asunto(s)
Acústica , Animales , Ecosistema , Ambiente , Espectrografía del Sonido
7.
Assist Technol ; 17(2): 133-43, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16392717

RESUMEN

In 2003, Touch Graphics Company carried out research on a new invention that promises to improve accessibility to science museums for visitors who are visually impaired. The system, nicknamed Ping!, allows users to navigate an exhibit area, listen to audio descriptions, and interact with exhibits using a cell phone-based interface. The system relies on computer telephony, and it incorporates a network of wireless environmental audio beacons that can be triggered by users wishing to travel to destinations they choose. User testing indicates that the system is effective, both as a way-finding tool and as a means of providing accessible information on museum content. Follow-up development projects will determine if this approach can be successfully implemented in other settings and for other user populations.


Asunto(s)
Accesibilidad Arquitectónica , Equipos de Comunicación para Personas con Discapacidad , Planificación Ambiental , Museos , Ciencia , Personas con Daño Visual , Recursos Audiovisuales , Diseño de Equipo , Humanos , Modelos Estructurales , Software de Reconocimiento del Habla
8.
Br J Vis Impair ; 30(2): 61-78, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22707841

RESUMEN

This study examined the effect of adding an artificially generated alert sound to a quiet vehicle on its detectability and localizability with 15 visually impaired adults. When starting from a stationary position, the hybrid electric vehicle with an alert sound was significantly more quickly and reliably detected than either the identical vehicle without such added sound or the comparable internal combustion engine vehicle. However, no significant difference was found between the vehicles in respect to how accurately the participants could discriminate the path of a given vehicle (straight vs. right turn). These results suggest that adding an artificial sound to a hybrid electric vehicle may help reduce delay in street crossing initiation by a blind pedestrian, but the benefit of such alert sound may not be obvious in determining whether the vehicle in his near parallel lane proceeds straight through the intersection or turns right in front of him.

9.
J Rehabil Res Dev ; 49(3): 381-93, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22773198

RESUMEN

A repeated-measures design with block randomization was used for the study, in which 14 adults with visual impairments attempted to detect three different vehicles: a hybrid electric vehicle (HEV) with an artificially generated sound (Vehicle Sound for Pedestrians [VSP]), an HEV without the VSP, and a comparable internal combustion engine (ICE) vehicle. The VSP vehicle (mean +/- standard deviation [SD] = 38.3 +/- 14.8 m) was detected at a significantly farther distance than the HEV (mean +/- SD = 27.5 +/- 11.5 m), t = 4.823, p < 0.001, but no significant difference existed between the VSP and ICE vehicles (mean +/- SD = 34.5 +/- 14.3 m), t = 1.787, p = 0.10. Despite the overall sound level difference between the two test sites (parking lot = 48.7 dBA, roadway = 55.1 dBA), no significant difference in detection distance between the test sites was observed, F(1, 13) = 0.025, p = 0.88. No significant interaction was found between the vehicle type and test site, F(1.31, 16.98) = 0.272, p = 0.67. The findings of the study may help us understand how adding an artificially generated sound to an HEV could affect some of the orientation and mobility tasks performed by blind pedestrians.


Asunto(s)
Percepción Auditiva , Ceguera/fisiopatología , Vehículos a Motor , Ruido , Adolescente , Adulto , Anciano , Señales (Psicología) , Electricidad , Ambiente , Femenino , Humanos , Masculino , Persona de Mediana Edad , Detección de Señal Psicológica/fisiología , Personas con Daño Visual , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA