Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 623(7985): 149-156, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37880367

RESUMEN

Host factors that mediate Leishmania genetic exchange are not well defined. Here we demonstrate that natural IgM (IgMn)1-4 antibodies mediate parasite genetic exchange by inducing the transient formation of a spherical parasite clump that promotes parasite fusion and hybrid formation. We establish that IgMn from Leishmania-free animals binds to the surface of Leishmania parasites to induce significant changes in the expression of parasite transcripts and proteins. Leishmania binding to IgMn is partially lost after glycosidase treatment, although parasite surface phosphoglycans, including lipophosphoglycan, are not required for IgMn-induced parasite clumping. Notably, the transient formation of parasite clumps is essential for Leishmania hybridization in vitro. In vivo, we observed a 12-fold increase in hybrid formation in sand flies provided a second blood meal containing IgMn compared with controls. Furthermore, the generation of recombinant progeny from mating hybrids and parental lines were only observed in sand flies provided with IgMn. Both in vitro and in vivo IgM-induced Leishmania crosses resulted in full genome hybrids that show equal patterns of biparental contribution. Leishmania co-option of a host natural antibody to facilitate mating in the insect vector establishes a new paradigm of parasite-host-vector interdependence that contributes to parasite diversity and fitness by promoting genetic exchange.


Asunto(s)
Interacciones Huésped-Parásitos , Inmunoglobulina M , Leishmania , Psychodidae , Reproducción , Animales , Hibridación Genética , Inmunoglobulina M/inmunología , Leishmania/genética , Leishmania/inmunología , Psychodidae/inmunología , Psychodidae/parasitología , Reproducción/genética , Interacciones Huésped-Parásitos/genética , Interacciones Huésped-Parásitos/inmunología , Regulación de la Expresión Génica , Glicósido Hidrolasas/metabolismo
2.
Clin Chem ; 69(7): 754-762, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37253044

RESUMEN

BACKGROUND: Human chorionic gonadotropin (hCG) detection is indicative of pregnancy and can be indicative of some forms of cancerous tumors. The hCG drug itself, however, is a performance enhancing substance used by male athletes to increase testosterone production. Antidoping testing for hCG is conducted in urine, often on immunoanalyzer platforms, many of which utilize biotin-streptavidin dependent immunoassays in which the presence of biotin in samples is a known confounding factor. While biotin interference in serum has been well-studied, the extent of biotin interference in urine has not. METHODS: Ten active male individuals underwent a 2-week hCG administration protocol concurrent with supplementation with biotin (20 mg/day) or placebo. Urine and serum samples were collected throughout the study and analyzed for hCG and biotin concentrations. RESULTS: Urinary biotin levels in the hCG + biotin group increased 500-fold over baseline and 29-fold over corresponding serum biotin levels after biotin supplementation. When using a biotin-dependent immunoassay, the hCG + placebo group produced hCG-positive results (hCG ≥ 5 mIU/mL) in 71% of urine samples, while the hCG + biotin group produced positive results in only 19% of samples. Both groups had elevated hCG values in serum measurements by a biotin-dependent immunoassay and in urine when using a biotin-independent immunoassay. Urinary hCG measurements and biotin levels from the hCG + biotin group showed a negative correlation (Spearman r = -0.46, P < 0.0001) when measured using a biotin-dependent immunoassay. CONCLUSIONS: Biotin supplementation can severely suppress urinary hCG values in assays utilizing biotin-streptavidin binding methods and therefore these types of assays are not recommended for use in urine samples containing high levels of biotin. Clinicaltrials.gov Registration Number: NCT05450900.


Asunto(s)
Biotina , Gonadotropina Coriónica , Embarazo , Femenino , Humanos , Masculino , Estreptavidina , Inmunoensayo/métodos , Suplementos Dietéticos
3.
Antimicrob Agents Chemother ; 66(2): e0143121, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34843389

RESUMEN

Infections caused by Staphylococcus aureus are a leading cause of mortality. Treating infections caused by S. aureus is difficult due to resistance against most traditional antibiotics, including ß-lactams. We previously reported the presence of mutations in gdpP among S. aureus strains that were obtained by serial passaging in ß-lactam drugs. Similar mutations have recently been reported in natural S. aureus isolates that are either nonsusceptible or resistant to ß-lactam antibiotics. gdpP codes for a phosphodiesterase that cleaves cyclic-di-AMP (CDA), a newly discovered second messenger. In this study, we sought to identify the role of gdpP in ß-lactam resistance in S. aureus. Our results showed that gdpP-associated mutations caused loss of phosphodiesterase function, leading to increased CDA accumulation in the bacterial cytosol. Deletion of gdpP led to an enhanced ability of the bacteria to withstand a ß-lactam challenge (2 to 3 log increase in bacterial CFU) by promoting tolerance without enhancing MICs of ß-lactam antibiotics. Our results demonstrated that increased drug tolerance due to loss of GdpP function can provide a selective advantage in acquisition of high-level ß-lactam resistance. Loss of GdpP function thus increases tolerance to ß-lactams that can lead to its therapy failure and can permit ß-lactam resistance to occur more readily.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Staphylococcus aureus , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Tolerancia a Medicamentos , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus/genética , Resistencia betalactámica/genética , beta-Lactamas/farmacología
4.
J Neuroinflammation ; 18(1): 125, 2021 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-34082753

RESUMEN

BACKGROUND: A key factor in the development of viral encephalitis is a virus crossing the blood-brain barrier (BBB). We have previously shown that age-related susceptibility of mice to the La Crosse virus (LACV), the leading cause of pediatric arbovirus encephalitis in the USA, was associated with the ability of the virus to cross the BBB. LACV infection in weanling mice (aged around 3 weeks) results in vascular leakage in the olfactory bulb/tract (OB/OT) region of the brain, which is not observed in adult mice aged > 6-8 weeks. Thus, we studied age-specific differences in the response of brain capillary endothelial cells (BCECs) to LACV infection. METHODS: To examine mechanisms of LACV-induced BBB breakdown and infection of the CNS, we analyzed BCECs directly isolated from weanling and adult mice as well as established a model where these cells were infected in vitro and cultured for a short period to determine susceptibility to virus infection and cell death. Additionally, we utilized correlative light electron microscopy (CLEM) to examine whether changes in cell morphology and function were also observed in BCECs in vivo. RESULTS: BCECs from weanling, but not adult mice, had detectable infection after several days in culture when taken ex vivo from infected mice suggesting that these cells could be infected in vitro. Further analysis of BCECs from uninfected mice, infected in vitro, showed that weanling BCECs were more susceptible to virus infection than adult BCECs, with higher levels of infected cells, released virus as well as cytopathic effects (CPE) and cell death. Although direct LACV infection is not detected in the weanling BCECs, CLEM analysis of brain tissue from weanling mice indicated that LACV infection induced significant cerebrovascular damage which allowed virus-sized particles to enter the brain parenchyma. CONCLUSIONS: These findings indicate that BCECs isolated from adult and weanling mice have differential viral load, infectivity, and susceptibility to LACV. These age-related differences in susceptibility may strongly influence LACV-induced BBB leakage and neurovascular damage allowing virus invasion of the CNS and the development of neurological disease.


Asunto(s)
Envejecimiento , Barrera Hematoencefálica/virología , Capilares/virología , Muerte Celular , Encefalitis de California/virología , Células Endoteliales/patología , Células Endoteliales/virología , Virus La Crosse/fisiología , Animales , Animales Recién Nacidos , Barrera Hematoencefálica/fisiopatología , Encéfalo/irrigación sanguínea , Encéfalo/patología , Encéfalo/virología , Capilares/patología , Caspasa 3/fisiología , Técnicas de Cultivo de Célula , Modelos Animales de Enfermedad , Encefalitis de California/patología , Encefalitis de California/fisiopatología , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica , Ensayo de Placa Viral
5.
J Bacteriol ; 201(8)2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30745369

RESUMEN

Coxiella burnetii, the etiological agent of Q fever, undergoes a unique biphasic developmental cycle where bacteria transition from a replicating (exponential-phase) large cell variant (LCV) form to a nonreplicating (stationary-phase) small cell variant (SCV) form. The alternative sigma factor RpoS is an essential regulator of stress responses and stationary-phase physiology in several bacterial species, including Legionella pneumophila, which has a developmental cycle superficially similar to that of C. burnetii Here, we used a C. burnetii ΔrpoS mutant to define the role of RpoS in intracellular growth and SCV development. Growth yields following infection of Vero epithelial cells or THP-1 macrophage-like cells with the rpoS mutant in the SCV form, but not the LCV form, were significantly lower than that of wild-type bacteria. RNA sequencing and whole-cell mass spectrometry of the C. burnetii ΔrpoS mutant revealed that a substantial portion of the C. burnetii genome is regulated by RpoS during SCV development. Regulated genes include those involved in stress responses, arginine transport, peptidoglycan remodeling, and synthesis of the SCV-specific protein ScvA. Genes comprising the dot/icm locus, responsible for production of the Dot/Icm type 4B secretion system, were also dysregulated in the rpoS mutant. These data were corroborated with independent assays demonstrating that the C. burnetii ΔrpoS strain has increased sensitivity to hydrogen peroxide and carbenicillin and a thinner cell wall/outer membrane complex. Collectively, these results demonstrate that RpoS is an important regulator of genes involved in C. burnetii SCV development and intracellular growth.IMPORTANCE The Q fever bacterium Coxiella burnetii has spore-like environmental stability, a characteristic that contributes to its designation as a potential bioweapon. Stability is likely conferred by a highly resistant, small cell variant (SCV) stationary-phase form that arises during a biphasic developmental cycle. Here, we define the role of the alternative sigma factor RpoS in regulating genes associated with SCV development. Genes involved in stress responses, amino acid transport, cell wall remodeling, and type 4B effector secretion were dysregulated in the rpoS mutant. Cellular impairments included defects in intracellular growth, cell wall structure, and resistance to oxidants. These results support RpoS as a central regulator of the Coxiella developmental cycle and identify developmentally regulated genes involved in morphological differentiation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Coxiella burnetii/citología , Coxiella burnetii/crecimiento & desarrollo , Regulación Bacteriana de la Expresión Génica , Factor sigma/metabolismo , Animales , Chlorocebus aethiops , Coxiella burnetii/genética , Citoplasma/microbiología , Células Epiteliales/microbiología , Eliminación de Gen , Perfilación de la Expresión Génica , Humanos , Macrófagos/microbiología , Proteómica , Factor sigma/deficiencia , Células THP-1 , Células Vero
6.
J Virol ; 91(21)2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28794042

RESUMEN

The highly conserved cytoplasmic tail of influenza virus glycoprotein hemagglutinin (HA) contains three cysteines, posttranslationally modified by covalently bound fatty acids. While viral HA acylation is crucial in virus replication, its physico-chemical role is unknown. We used virus-like particles (VLP) to study the effect of acylation on morphology, protein incorporation, lipid composition, and membrane fusion. Deacylation interrupted HA-M1 interactions since deacylated mutant HA failed to incorporate an M1 layer within spheroidal VLP, and filamentous particles incorporated increased numbers of neuraminidase (NA). While HA acylation did not influence VLP shape, lipid composition, or HA lateral spacing, acylation significantly affected envelope curvature. Compared to wild-type HA, deacylated HA is correlated with released particles with flat envelope curvature in the absence of the matrix (M1) protein layer. The spontaneous curvature of palmitate was calculated by molecular dynamic simulations and was found to be comparable to the curvature values derived from VLP size distributions. Cell-cell fusion assays show a strain-independent failure of fusion pore enlargement among H2 (A/Japan/305/57), H3 (A/Aichi/2/68), and H3 (A/Udorn/72) viruses. In contradistinction, acylation made no difference in the low-pH-dependent fusion of isolated VLPs to liposomes: fusion pores formed and expanded, as demonstrated by the presence of complete fusion products observed using cryo-electron tomography (cryo-ET). We propose that the primary mechanism of action of acylation is to control membrane curvature and to modify HA's interaction with M1 protein, while the stunting of fusion by deacylated HA acting in isolation may be balanced by other viral proteins which help lower the energetic barrier to pore expansion.IMPORTANCE Influenza A virus is an airborne pathogen causing seasonal epidemics and occasional pandemics. Hemagglutinin (HA), a glycoprotein abundant on the virion surface, is important in both influenza A virus assembly and entry. HA is modified by acylation whose removal abrogates viral replication. Here, we used cryo-electron tomography to obtain three-dimensional images to elucidate a role for HA acylation in VLP assembly. Our data indicate that HA acylation contributes to the capability of HA to bend membranes and to HA's interaction with the M1 scaffold protein during virus assembly. Furthermore, our data on VLP and, by hypothesis, virus suggests that HA acylation, while not critical to fusion pore formation, contributes to pore expansion in a target-dependent fashion.


Asunto(s)
Membrana Celular/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Virus de la Influenza A/fisiología , Lipoilación/fisiología , Fusión de Membrana , Ensamble de Virus/fisiología , Acilación , Animales , Membrana Celular/metabolismo , Perros , Células HEK293 , Humanos , Células de Riñón Canino Madin Darby , Virión/fisiología , Replicación Viral
7.
Int J Med Microbiol ; 308(6): 675-682, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28867522

RESUMEN

Phenol-soluble modulins (PSMs) are alpha-helical, amphipathic peptides that have multiple functions in staphylococcal physiology and virulence. Recent research has suggested that PSMs form amyloid fibrils and amyloids are involved in PSM-mediated phenotypes such as cytolysis and biofilm stability. While we observed PSM amyloid formation using electron microscopy and dye assays, there were no apparent differences in the production of extracellular fibrous material between a PSM-deficient strain and the isogenic wild-type strain. Furthermore, we detected no correlation between cytolytic or pro-inflammatory activities with the propensity of PSM derivatives to form amyloids. In addition, we propose a model based on our finding of non-specific attachment of PSMs to DNA, which we here report results in resistance to DNase digestion, explaining previous findings on PSM-mediated biofilm stability without the necessity to assume amyloid involvement. Collectively, our results indicate that PSM amyloid formation may not be of major relevance for known key biological functions of PSMs. Intriguingly, however, we found that amyloid-forming capacity of PSMalpha3 allows almost no amino acid exchanges, suggesting importance of amyloid formation in possibly yet unknown functions of PSMs.


Asunto(s)
Amiloide/metabolismo , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Proteínas de Unión al ADN/metabolismo , Staphylococcus aureus/fisiología , Biopelículas , Microscopía Electrónica de Transmisión , Modelos Biológicos , Coloración y Etiquetado , Staphylococcus aureus/genética , Factores de Virulencia/metabolismo
8.
Artículo en Inglés | MEDLINE | ID: mdl-28807923

RESUMEN

Penicillin binding protein 4 (PBP4) can provide high-level ß-lactam resistance in Staphylococcus aureus A series of missense and promoter mutations associated with pbp4 were detected in strains that displayed high-level resistance. We show here that the missense mutations facilitate the ß-lactam resistance mediated by PBP4 and the promoter mutations lead to overexpression of pbp4 Our results also suggest a cooperative interplay among PBPs for ß-lactam resistance.


Asunto(s)
Proteínas de Unión a las Penicilinas/genética , Regiones Promotoras Genéticas/genética , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/genética , Resistencia betalactámica/genética , Antibacterianos/farmacología , Genoma Bacteriano/genética , Mutación Missense/genética , Proteínas de Unión a las Penicilinas/biosíntesis , Penicilinas/metabolismo , Penicilinas/farmacología
9.
J Immunol ; 195(10): 4913-21, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26423149

RESUMEN

Neuronal apoptosis is a key aspect of many different neurologic diseases, but the mechanisms remain unresolved. Recent studies have suggested a mechanism of innate immune-induced neuronal apoptosis through the stimulation of endosomal TLRs in neurons. TLRs are stimulated both by pathogen-associated molecular patterns as well as by damage-associated molecular patterns, including microRNAs released by damaged neurons. In the present study, we identified the mechanism responsible for TLR7/TLR9-mediated neuronal apoptosis. TLR-induced apoptosis required endosomal localization of TLRs but was independent of MyD88 signaling. Instead, apoptosis required the TLR adaptor molecule SARM1, which localized to the mitochondria following TLR activation and was associated with mitochondrial accumulation in neurites. Deficiency in SARM1 inhibited both mitochondrial accumulation in neurites and TLR-induced apoptosis. These studies identify a non-MyD88 pathway of TLR7/ TLR9 signaling in neurons and provide a mechanism for how innate immune responses in the CNS directly induce neuronal damage.


Asunto(s)
Apoptosis/inmunología , Proteínas del Dominio Armadillo/inmunología , Proteínas del Citoesqueleto/inmunología , Glicoproteínas de Membrana/inmunología , Factor 88 de Diferenciación Mieloide/inmunología , Neuritas/inmunología , Receptor Toll-Like 7/inmunología , Receptor Toll-Like 9/inmunología , Animales , Apoptosis/genética , Proteínas del Dominio Armadillo/genética , Proteínas del Citoesqueleto/genética , Glicoproteínas de Membrana/genética , Ratones , Ratones Noqueados , Mitocondrias/genética , Mitocondrias/inmunología , Factor 88 de Diferenciación Mieloide/genética , Receptor Toll-Like 7/genética , Receptor Toll-Like 9/genética
10.
J Infect Dis ; 214(suppl 3): S319-S325, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27511895

RESUMEN

Selective autophagy of the endoplasmic reticulum (termed ER-phagy) is controlled by members of the FAM134 reticulon protein family. Here we used mouse embryonic fibroblasts from mice deficient in FAM134B to examine the role of the ER in replication of historic (Mayinga) or contemporary (Makona GCO7) strains of Ebola virus (EBOV). Loss of FAM134B resulted in 1-2 log10 higher production of infectious EBOV, which was associated with increased production of viral proteins GP and VP40 and greater accumulation of nucleocaspid lattices. In addition, only 10% of wild-type cells contained detectable nucleoprotein, whereas knockout of FAM134B resulted in 80% of cells positive for nucleoprotein. Together, these data suggest that FAM134B-dependent ER-phagy is an important limiting event in EBOV replication in mouse cells and may have implications for further development of antiviral therapeutics and murine models of infection.


Asunto(s)
Autofagia , Ebolavirus/fisiología , Fiebre Hemorrágica Ebola/virología , Proteínas de la Membrana/genética , Animales , Células Cultivadas , Ebolavirus/genética , Retículo Endoplásmico/metabolismo , Técnicas de Inactivación de Genes , Humanos , Proteínas de la Membrana/metabolismo , Ratones , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Replicación Viral
11.
Immunol Invest ; 45(6): 473-89, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27294302

RESUMEN

The present study was carried out to investigate the anti-arthritic activity of Berberis aristata hydroalcoholic extract (BAHE) in formaldehyde-induced arthritis and adjuvant-induced arthritis (AIA) model. Arthritis was induced by administration of either formaldehyde (2% v/v) or CFA into the subplantar surface of the hind paw of the animal. In formaldehyde-induced arthritis and AIA, treatment of BAHE at doses 50, 100 and 200 mg/kg orally significantly decreased joint inflammation as evidenced by decrease in joint diameter and reduced inflammatory cell infiltration in histopathological examination. BAHE treatment demonstrated dose-dependent improvement in the redox status of synovium (decrease in GSH, MDA, and NO levels and increase in SOD and CAT activities). The beneficial effect of BAHE was substantiated with decreased expression of inflammatory markers such as IL-1ß, IL-6, TNF-R1, and VEGF by immunohistochemistry analysis in AIA model. BAHE increased HO-1/Nrf-2 and suppressed NF-κB mRNA and protein expression in adjuvant immunized joint. Additionally, BAHE abrogated degrading enzymes, as there was decreased protein expression of MMP-3 and -9 in AIA. In conclusion, we demonstrated the anti-arthritic activity of Berberis aristata hydroalcoholic extract via the mechanism of inhibition of NF-κB and activation of Nrf-2/HO-1.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Artritis Experimental/tratamiento farmacológico , Berberis/química , Hemo Oxigenasa (Desciclizante)/inmunología , Factor 2 Relacionado con NF-E2/inmunología , FN-kappa B/inmunología , Extractos Vegetales/farmacología , Administración Oral , Animales , Artritis Experimental/inducido químicamente , Artritis Experimental/inmunología , Artritis Experimental/patología , Catalasa/genética , Catalasa/inmunología , Relación Dosis-Respuesta a Droga , Formaldehído , Adyuvante de Freund , Regulación de la Expresión Génica , Glutatión/agonistas , Glutatión/inmunología , Goma Arábiga , Hemo Oxigenasa (Desciclizante)/genética , Masculino , Malondialdehído/antagonistas & inhibidores , Malondialdehído/inmunología , Factor 2 Relacionado con NF-E2/genética , FN-kappa B/genética , Óxido Nítrico/antagonistas & inhibidores , Óxido Nítrico/inmunología , Ratas , Ratas Wistar , Transducción de Señal , Superóxido Dismutasa/genética , Superóxido Dismutasa/inmunología , Membrana Sinovial/efectos de los fármacos , Membrana Sinovial/inmunología , Membrana Sinovial/patología , Tarso Animal/efectos de los fármacos , Tarso Animal/inmunología , Tarso Animal/patología
12.
J Indian Prosthodont Soc ; 16(2): 216-20, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27141176

RESUMEN

The rehabilitation of a patient who has suffered the psychological trauma due to loss of an eye requires a prosthesis that will provide the optimum cosmetic and functional result. The mode of rehabilitation varies based on the type of defect and surgical approach being adopted. A case series of prosthetic rehabilitation of three types of orbital defects - evisceration, enucleation and exenteration have been reported in this article. The clinical relevance of surgical approaches highlights the preservation of remaining anatomic structures creating a negative space or concavity to aid in future prosthetic rehabilitation. A multidisciplinary management and team approach is essential in providing esthetics and to regain the confidence. Follow-up care for the patient is mandatory.

13.
J Virol ; 88(13): 7602-17, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24760890

RESUMEN

UNLABELLED: Respiratory syncytial virus (RSV), a member of the Paramyxoviridae family of nonsegmented, negative-sense, single-stranded RNA genome viruses, is a leading cause of lower respiratory tract infections in infants, young children, and the elderly or immunocompromised. There are many open questions regarding the processes that regulate human RSV (hRSV) assembly and budding. Here, using cryo-electron tomography, we identified virus particles that were spherical, filamentous, and asymmetric in structure, all within the same virus preparation. The three particle morphologies maintained a similar organization of the surface glycoproteins, matrix protein (M), M2-1, and the ribonucleoprotein (RNP). RNP filaments were traced in three dimensions (3D), and their total length was calculated. The measurements revealed the inclusion of multiple full-length genome copies per particle. RNP was associated with the membrane whenever the M layer was present. The amount of M coverage ranged from 24% to 86% in the different morphologies. Using fluorescence light microscopy (fLM), direct stochastic optical reconstruction microscopy (dSTORM), and a proximity ligation assay (PLA), we provide evidence illustrating that M2-1 is located between RNP and M in isolated viral particles. In addition, regular spacing of the M2-1 densities was resolved when hRSV viruses were imaged using Zernike phase contrast (ZPC) cryo-electron tomography. Our studies provide a more complete characterization of the hRSV virion structure and substantiation that M and M2-1 regulate virus organization. IMPORTANCE: hRSV is a leading cause of lower respiratory tract infections in infants and young children as well as elderly or immunocompromised individuals. We used cryo-electron tomography and Zernike phase contrast cryo-electron tomography to visualize populations of purified hRSV in 3D. We observed the three distinct morphologies, spherical, filamentous, and asymmetric, which maintained comparable organizational profiles. Depending on the virus morphology examined, the amount of M ranged from 24% to 86%. We complemented the cryo-imaging studies with fluorescence microscopy, dSTORM, and a proximity ligation assay to provide additional evidence that M2-1 is incorporated into viral particles and is positioned between M and RNP. The results highlight the impact of M and M2-1 on the regulation of hRSV organization.


Asunto(s)
ARN Viral/química , Virus Sincitial Respiratorio Humano/ultraestructura , Ribonucleoproteínas/química , Proteínas de la Matriz Viral/química , Microscopía por Crioelectrón/métodos , Humanos , ARN Viral/metabolismo , Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitial Respiratorio Humano/fisiología , Ribonucleoproteínas/metabolismo , Proteínas de la Matriz Viral/metabolismo
14.
Cell Microbiol ; 16(3): 378-95, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24119232

RESUMEN

Selective autophagy functions to specifically degrade cellular cargo tagged by ubiquitination, including bacteria. Strains of the Burkholderia cepacia complex (Bcc) are opportunistic pathogens that cause life-threatening infections in patients with cystic fibrosis (CF) and chronic granulomatous disease (CGD). While there is evidence that defective macrophage autophagy in a mouse model of CF can influence B. cenocepacia susceptibility, there have been no comprehensive studies on how this bacterium is sensed and targeted by the host autophagy response in human macrophages. Here, we describe the intracellular life cycle of B. cenocepacia J2315 and its interaction with the autophagy pathway in human cells. Electron and confocal microscopy analyses demonstrate that the invading bacteria interact transiently with the endocytic pathway before escaping to the cytosol. This escape triggers theselective autophagy pathway, and the recruitment of ubiquitin, the ubiquitin-binding adaptors p62 and NDP52 and the autophagosome membrane-associated protein LC3B, to the bacterial vicinity. However, despite recruitment of these key autophagy pathway effectors, B. cenocepacia blocks autophagosome completion and replicates in the host cytosol. We find that a pre-infection increase in cellular autophagy flux can significantly inhibit B. cenocepacia replication and that lower autophagy flux in macrophages from immunocompromised CGD patients could contribute to increased B. cenocepacia susceptibility, identifying autophagy manipulation as a potential therapeutic approach to reduce bacterial burden in B. cenocepacia infections.


Asunto(s)
Autofagia/inmunología , Infecciones por Burkholderia/inmunología , Burkholderia cenocepacia/inmunología , Evasión Inmune , Macrófagos/inmunología , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Línea Celular , Citosol/microbiología , Modelos Animales de Enfermedad , Retículo Endoplásmico/inmunología , Humanos , Macrófagos/microbiología , Ratones , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos/inmunología , Proteínas Nucleares , Interferencia de ARN , ARN Interferente Pequeño , Proteína Sequestosoma-1
15.
Proc Natl Acad Sci U S A ; 109(48): 19781-5, 2012 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-23129646

RESUMEN

Chlamydia trachomatis is among the most clinically significant human pathogens, yet their obligate intracellular nature places severe restrictions upon research. Chlamydiae undergo a biphasic developmental cycle characterized by an infectious cell type known as an elementary body (EB) and an intracellular replicative form called a reticulate body (RB). EBs have historically been described as metabolically dormant. A cell-free (axenic) culture system was developed, which showed high levels of metabolic and biosynthetic activity from both EBs and RBs, although the requirements differed for each. EBs preferentially used glucose-6-phosphate as an energy source, whereas RBs required ATP. Both developmental forms showed increased activity when incubated under microaerobic conditions. Incorporation of isotopically labeled amino acids into proteins from both developmental forms indicated unique expression profiles, which were confirmed by genome-wide transcriptional analysis. The described axenic culture system will greatly enhance biochemical and physiological analyses of chlamydiae.


Asunto(s)
Chlamydia trachomatis/fisiología , Transcripción Genética/fisiología , Chlamydia trachomatis/metabolismo , Chlamydia trachomatis/ultraestructura , Medios de Cultivo , Microscopía Electrónica de Transmisión , Biosíntesis de Proteínas
16.
Biomed Chromatogr ; 28(7): 974-85, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24496964

RESUMEN

Anti-doping laboratories need to be aware of evolutions on the steroid market and elucidate steroid metabolism to identify markers of misuse. Owing to ethical considerations, in vivo and in vitro models are preferred to human excretion for nonpharmaceutical grade substances. In this study the chimeric mouse model and human liver microsomes (HLM) were used to elucidate the phase I metabolism of a new steroid product containing, according to the label, methylstenbolone. Analysis revealed the presence of both methylstenbolone and methasterone, a structurally closely related steroid. Via HPLC fraction collection, methylstenbolone was isolated and studied with both models. Using HLM, 10 mono-hydroxylated derivatives (U1-U10) and a still unidentified derivative of methylstenbolone (U13) were detected. In chimeric mouse urine only di-hydroxylated metabolites (U11-U12) were identified. Although closely related, neither methasterone nor its metabolites were detected after administration of isolated methylstenbolone. Administration of the steroid product resulted mainly in the detection of methasterone metabolites, which were similar to those already described in the literature. Methylstenbolone metabolites previously described were not detected. A GC-MS/MS multiple reaction monitoring method was developed to detect methylstenbolone misuse. In one out of three samples, previously tested positive for methasterone, methylstenbolone and U13 were additionally detected, indicating the applicability of the method.


Asunto(s)
Androstenoles/metabolismo , Androstenoles/orina , Microsomas Hepáticos/metabolismo , Androstenoles/química , Animales , Cromatografía Líquida de Alta Presión , Cromatografía de Gases y Espectrometría de Masas , Humanos , Ratones , Ratones SCID , Ratones Transgénicos , Modelos Moleculares , Espectrometría de Masas en Tándem/métodos
17.
Drug Test Anal ; 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38176407

RESUMEN

Δ9 -Tetrahydrocannabinol (Δ9 -THC) is usually the primary psychoactive agent in cannabis preparations. Recently, products containing another isomer, Δ8 -tetrahydrocannabinol (Δ8 -THC), have become available for sale. Δ8 -THC exists naturally in the cannabis plant at very low concentrations; hence, the Δ8 -THC present in most of the above-mentioned products is likely to be manufactured synthetically. A surge in popularity of these products, coupled with little oversight to ensure purity and potency, has led to reports of adverse events. Workplace drug testing programs as well as many sporting organizations prohibit the use of cannabinoids. Carboxy-Δ9 -THC (Δ9 -THC-COOH) is the targeted urinary metabolite for detection of cannabis use. The proliferation of products containing Δ8 -THC, which metabolizes to Δ8 -THC-COOH, presents analytical complexity with respect to separation and quantification of the individual isomers as well as legal complexity with respect to lack of clarity around the legal status of Δ8 -THC. This study aims to estimate the prevalence of Δ8 -THC use in the athlete community by monitoring for Δ8 -THC-COOH in samples collected for antidoping. A high-performance liquid chromatography tandem mass spectrometry (LC-MS/MS) method was utilized to resolve Δ8 and Δ9 -THC-COOH. One thousand samples with a presumptive Δ9 -THC-COOH finding in routine screening were analyzed by the above LC-MS/MS method. Approximately 12% of samples contained Δ8 -THC-COOH at relative abundances between 5% and 100% of total carboxy-THC content.

18.
Curr Protoc ; 4(5): e1034, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38717581

RESUMEN

Scanning electron microscopy (SEM) remains distinct in its ability to allow topographical visualization of structures. Key elements to consider for successful examination of biological specimens include appropriate preparative and imaging techniques. Chemical processing induces structural artifacts during specimen preparation, and several factors need to be considered when selecting fixation protocols to reduce these effects while retaining structures of interest. Particular care for proper dehydration of specimens is essential to minimize shrinkage and is necessary for placement under the high-vacuum environment required for routine operation of standard SEMs. Choice of substrate for mounting and coating specimens can reduce artifacts known as charging, and a basic understanding of microscope settings can optimize parameters to achieve desired results. This article describes fundamental techniques and tips for routine specimen preparation for a variety of biological specimens, preservation of labile or fragile structures, immune-labeling strategies, and microscope imaging parameters for optimal examination by SEM. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Chemical preparative techniques for preservation of biological specimens for examination by SEM Alternate Protocol 1: Practical considerations for the preparation of soft tissues Alternate Protocol 2: Removal of debris from the exoskeleton of invertebrates Alternate Protocol 3: Fixation of colonies grown on agar plates Alternate Protocol 4: Stabilization of polysaccharide structures with alcian blue and lysine Alternate Protocol 5: Preparation of non-adherent particulates in solution for SEM Support Protocol 1: Application of thin layer of adhesive on substrate to improve adherence Support Protocol 2: Poly-L-lysine coating specimen substrates for improved adherence Support Protocol 3: Microwave processing of biological specimens for examination by SEM Basic Protocol 2: Critical point drying of specimens Alternate Protocol 6: Chemical alternative to critical point drying Basic Protocol 3: Sputter coating Alternate Protocol 7: Improved bulk conductivity through "OTOTO" Basic Protocol 4: Immune-labeling strategies Alternate Protocol 8: Immune-labeling internal antigens with small gold probes Alternate protocol 9: Quantum dot or fluoronanogold preparations for correlative techniques Basic Protocol 5: Exposure of internal structures by mechanical fracturing Basic Protocol 6: Exposure of internal structures of tissues by fracturing with liquid nitrogen Basic Protocol 7: Anaglyph production from stereo pairs to produce 3D images.


Asunto(s)
Microscopía Electrónica de Rastreo , Manejo de Especímenes , Microscopía Electrónica de Rastreo/métodos , Manejo de Especímenes/métodos , Animales
19.
Microbiol Spectr ; : e0048624, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38916317

RESUMEN

Staphylococcus aureus is a leading cause of healthcare-associated infections globally. Vancomycin-resistant S. aureus (VRSA), those with high-level resistance [minimum inhibitory concentration (MIC) of 16-32 µg/mL vancomycin], are uncommon, whereas vancomycin-intermediate S. aureus (VISA; MIC of 4-8 µg/mL), are isolated more frequently and develop during long-term and/or repeated use of the antibiotic. VISA can be difficult to eradicate and infections may persist. Our knowledge of mechanisms that underlie the development of VISA is incomplete. We used a genomics approach to investigate the VISA phenotype in three prominent S. aureus lineages. All VISA clinical isolates tested had increased cell wall thickness compared with vancomycin-susceptible S. aureus strains. Growth rates of clonal complex (CC) 5, CC8, and CC45 clinical isolates were reduced in 2 µg/mL vancomycin compared to media alone. Culture in 2 and 4 µg/mL vancomycin sequentially for two weeks reduced susceptibility to daptomycin, televancin, tigecycline, and vancomycin in a majority of CC5, CC8, and CC45 isolates tested. We identified alleles reported previously to contribute to the VISA phenotype, but unexpectedly, these alleles were unique to each CC. A subtherapeutic concentration of vancomycin elicited changes in the VISA transcriptome-common and unique-among the three CCs tested. Multiple genes, including those encoding a glycerate kinase, an M50 family metallopeptidase, and an uncharacterized membrane protein, were upregulated among all three lineages and not reported previously as associated with VISA. Although there are lineage-specific changes in DNA sequence, our findings suggest changes in the VISA transcriptome constitute a general response to stress that confers reduced susceptibility to multiple antibiotics. IMPORTANCE: Our understanding of the mechanisms that underlie the development of vancomycin-intermediate Staphylococcus aureus (VISA) is incomplete. To provide a more comprehensive view of this process, we compared genome sequences of clonal complex (CC) 5, CC8, and CC45 VISA clinical isolates and measured changes in the transcriptomes of these isolates during culture with a subtherapeutic concentration of vancomycin. Notably, we identified differentially expressed genes that were lineage-specific or common to the lineages tested, including genes that have not been previously reported to contribute to a VISA phenotype. Changes in gene expression were accompanied by reduced growth rate, increased cell wall thickness, and reduced susceptibility to daptomycin, televancin, tigecycline, and vancomycin. Our results provide support to the idea that changes in gene expression contribute to the development of VISA among three CCs that are a prominent cause of human infections.

20.
Mol Microbiol ; 86(2): 367-81, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22906310

RESUMEN

Carbapenems such as meropenem are being investigated for their potential therapeutic utility against highly drug-resistant tuberculosis. These ß-lactams target the transpeptidases that introduce interpeptide cross-links into bacterial peptidoglycan thereby controlling rigidity of the bacterial envelope. Treatment of Mycobacterium tuberculosis (Mtb) with the ß-lactamase inhibitor clavulanate together with meropenem resulted in rapid, polar, cell lysis releasing cytoplasmic contents. In Mtb it has been previously demonstrated that 3-3 cross-linkages [involving two diaminopimelate (DAP) molecules] predominate over 4-3 cross-linkages (involving one DAP and one D-alanine) in stationary-phase cells. We purified and analysed peptidoglycan from Mtb and found that 3-3 cross-linkages predominate throughout all growth phases and the ratio of 4-3/3-3 linkages does not vary significantly under any growth condition. Meropenem treatment was accompanied by a dramatic accumulation of unlinked pentapeptide stems with no change in the tetrapeptide pools, suggesting that meropenem inhibits both a D,D-carboxypeptidase and an L,D-transpeptidase. We purified a candidate D,D-carboxypeptidase DacB2 and showed that meropenem indeed directly inhibits this enzyme by forming a stable adduct at the enzyme active site. These results suggest that the rapid lysis of meropenem-treated cells is the result of synergistically inhibiting the transpeptidases that introduce 3,3-cross-links while simultaneously limiting the pool of available substrates available for cross-linking.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/enzimología , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/metabolismo , Tienamicinas/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Humanos , Meropenem , Mycobacterium tuberculosis/genética , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/antagonistas & inhibidores , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA