RESUMEN
Lipid interaction with α-synuclein (αSyn) has been long implicated in the pathogenesis of Parkinson's disease (PD). However, it has not been fully determined which lipids are involved in the initiation of αSyn aggregation in PD. Here exploiting genetic understanding associating the loss-of-function mutation in Synaptojanin 1 (SYNJ1), a phosphoinositide phosphatase, with familial PD and analysis of postmortem PD brains, we identified a novel lipid molecule involved in the toxic conversion of αSyn and its relation to PD. We first established a SYNJ1 knockout cell model and found SYNJ1 depletion increases the accumulation of pathological αSyn. Lipidomic analysis revealed SYNJ1 depletion elevates the level of its substrate phosphatidylinositol-3,4,5-trisphosphate (PIP3). We then employed Caenorhabditis elegans model to examine the effect of SYNJ1 defect on the neurotoxicity of αSyn. Mutations in SYNJ1 accelerated the accumulation of αSyn aggregation and induced locomotory defects in the nematodes. These results indicate that functional loss of SYNJ1 promotes the pathological aggregation of αSyn via the dysregulation of its substrate PIP3, leading to the aggravation of αSyn-mediated neurodegeneration. Treatment of cultured cell line and primary neurons with PIP3 itself or with PIP3 phosphatase inhibitor resulted in intracellular formation of αSyn inclusions. Indeed, in vitro protein-lipid overlay assay validated that phosphoinositides, especially PIP3, strongly interact with αSyn. Furthermore, the aggregation assay revealed that PIP3 not only accelerates the fibrillation of αSyn, but also induces the formation of fibrils sharing conformational and biochemical characteristics similar to the fibrils amplified from the brains of PD patients. Notably, the immunohistochemical and lipidomic analyses on postmortem brain of patients with sporadic PD showed increased PIP3 level and its colocalization with αSyn. Taken together, PIP3 dysregulation promotes the pathological aggregation of αSyn and increases the risk of developing PD, and PIP3 represents a potent target for intervention in PD.
Asunto(s)
Enfermedad de Parkinson , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Encéfalo/patología , Lípidos , Neuronas/patología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Fosfatos de Fosfatidilinositol/metabolismoRESUMEN
The supersaturation of a solution refers to a non-equilibrium phase in which the solution is trapped in a soluble state, even though the solute's concentration is greater than its thermodynamic solubility. Upon breaking supersaturation, crystals form and the concentration of the solute decreases to its thermodynamic solubility. Soon after the discovery of the prion phenomena, it was recognized that prion disease transmission and propagation share some similarities with the process of crystallization. Subsequent studies exploring the structural and functional association between amyloid fibrils and amyloidoses solidified this paradigm. However, recent studies have not necessarily focused on supersaturation, possibly because of marked advancements in structural studies clarifying the atomic structures of amyloid fibrils. On the other hand, there is increasing evidence that supersaturation plays a critical role in the formation of amyloid fibrils and the onset of amyloidosis. Here, we review the recent evidence that supersaturation plays a role in linking unfolding/folding and amyloid fibril formation. We also introduce the HANABI (HANdai Amyloid Burst Inducer) system, which enables high-throughput analysis of amyloid fibril formation by the ultrasonication-triggered breakdown of supersaturation. In addition to structural studies, studies based on solubility and supersaturation are essential both to developing a comprehensive understanding of amyloid fibrils and their roles in amyloidosis, and to developing therapeutic strategies.
Asunto(s)
Amiloide , Amiloidosis , Amiloide/química , Amiloidosis/metabolismo , Humanos , Soluciones , Termodinámica , Microglobulina beta-2/químicaRESUMEN
Amyloid fibril formation is a general property of proteins and peptides. It is a physicochemical phenomenon similar to crystallization, in which amyloid precursor proteins exceeding solubility precipitate through the breakdown of supersaturation. Using the ultrasonication-forced amyloid fibril inducer HANABI, we have discovered that serum albumin acts as an inhibitor in dialysis-related amyloidosis. Exploring the factors that induce or inhibit amyloid fibril formation using HANABI can lead to the development of early diagnosis and prevention methods for amyloidosis.
Asunto(s)
Amiloide , Amiloidosis , Humanos , Amiloide/química , Amiloide/metabolismo , Factores Biológicos , Amiloidosis/etiología , Amiloidosis/metabolismo , Péptidos/metabolismoRESUMEN
From a physicochemical viewpoint, amyloid fibril formation is a phase transition from soluble to crystal-like sates limited by supersaturation. It occurs only above solubility (i.e., the solubility limit) coupled with a breakdown of supersaturation. Although many studies have examined the role of molecular chaperones in the context of proteostasis, the role of supersaturation has not been addressed. Moreover, although molecular chaperone-dependent disaggregations have been reported for preformed amyloid fibrils, amyloid fibrils will not dissolve above the solubility of monomers, even if agitations fragment long fibrils to shorter amyloid particles. On the other hand, on considering a reversible and coupled equilibrium of interactions, folding/unfolding and amyloid formation/disaggregation, molecules stabilizing native states can work as a disaggregase reversing the amyloid fibrils to monomers. It is likely that the proteostasis network has various intra- and extracellular components which disaggregate preformed amyloid fibrils as well as prevent amyloid formation. Further studies with a view of solubility and supersaturation will be essential for comprehensive understanding of proteostasis.
Asunto(s)
Amiloide , Proteostasis , Humanos , Amiloide/metabolismo , Amiloide/química , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/química , Agregado de Proteínas , Pliegue de Proteína , SolubilidadRESUMEN
The rapid amplification and sensitive detection of α-synuclein (αSyn) seeds is an efficient approach for the early diagnosis of Parkinson's disease. Ultrasonication stands out as a promising method for the rapid amplification of αSyn seeds because of its robust fibril fragmentation capability. However, ultrasonication also induces the primary nucleation of αSyn monomers, deteriorating the seed detection sensitivity by generating seed-independent fibrils. In this study, we show that an addition of surfactants to the αSyn monomer solution during αSyn seed detection under ultrasonication remarkably improves the detection sensitivity of the αSyn seeds by a factor of 100-1000. Chemical kinetic analysis reveals that these surfactants reduce the rate of primary nucleation while promoting the fragmentation of the αSyn fibrils under ultrasonication. These effects are attributed to the modification of the ultrasonic cavitation surface by the surfactants. Our study enhances the utility of ultrasonication in clinical assays targeting αSyn seeds as the Parkinson's disease biomarker.
Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Humanos , Ultrasonido , Cinética , Tensoactivos , Amiloide , Proteínas AmiloidogénicasRESUMEN
Characterizing the mechanical properties of single colloids is a central problem in soft matter physics. It also plays a key role in cell biology through biopolymer condensates, which function as membraneless compartments. Such systems can also malfunction, leading to the onset of a number of diseases, including many neurodegenerative diseases; the functional and pathological condensates are commonly differentiated by their mechanical signature. Probing the mechanical properties of biopolymer condensates at the single particle level has, however, remained challenging. In this study, we demonstrate that acoustic trapping can be used to profile the mechanical properties of single condensates in a contactless manner. We find that acoustic fields exert the acoustic radiation force on condensates, leading to their migration to a trapping point where acoustic potential energy is minimized. Furthermore, our results show that the Brownian motion fluctuation of condensates in an acoustic potential well is an accurate probe for their bulk modulus. We demonstrate that this framework can detect the change in the bulk modulus of polyadenylic acid condensates in response to changes in environmental conditions. Our results show that acoustic trapping opens up a novel path to profile the mechanical properties of soft colloids at the single particle level in a non-invasive manner with applications in biology, materials science, and beyond.
RESUMEN
BACKGROUND: Dialysis-related amyloidosis (DRA) is a severe complication in end-stage kidney disease (ESKD) patients undergoing long-term dialysis treatment, characterized by the deposition of ß2-microglobulin-related amyloids (Aß2M amyloid). To inhibit DRA progression, hexadecyl-immobilized cellulose bead (HICB) columns are employed to adsorb circulating ß2-microglobulin (ß2M). However, it is possible that the HICB also adsorbs other molecules involved in amyloidogenesis. METHODS: We enrolled 14 ESKD patients using HICB columns for DRA treatment; proteins were extracted from HICBs following treatment and identified using liquid chromatography-linked mass spectrometry. We measured the removal rate of these proteins and examined the effect of those molecules on Aß2M amyloid fibril formation in vitro. RESULTS: We identified 200 proteins adsorbed by HICBs. Of these, 21 were also detected in the amyloid deposits in the carpal tunnels of patients with DRA. After passing through the HICB column and hemodialyzer, the serum levels of proteins such as ß2M, lysozyme, angiogenin, complement factor D and matrix Gla protein were reduced. These proteins acted in the Aß2M amyloid fibril formation. CONCLUSIONS: HICBs adsorbed diverse proteins in ESKD patients with DRA, including those detected in amyloid lesions. Direct hemoperfusion utilizing HICBs may play a role in acting Aß2M amyloidogenesis by reducing the amyloid-related proteins.
Asunto(s)
Amiloidosis , Celulosa , Fallo Renal Crónico , Proteómica , Diálisis Renal , Microglobulina beta-2 , Humanos , Amiloidosis/metabolismo , Amiloidosis/sangre , Amiloidosis/terapia , Diálisis Renal/efectos adversos , Masculino , Femenino , Microglobulina beta-2/metabolismo , Microglobulina beta-2/sangre , Proteómica/métodos , Anciano , Celulosa/química , Persona de Mediana Edad , Adsorción , Fallo Renal Crónico/terapia , Fallo Renal Crónico/metabolismo , Fallo Renal Crónico/sangre , Espectrometría de Masas/métodos , Amiloide/metabolismo , Cromatografía LiquidaRESUMEN
Much effort has been devoted to elucidate mechanisms of amyloid fibril formation using various kinds of additives, such as salts, metals, detergents, and biopolymers. Here, we review the effects of additives with a focus on polyphosphate (polyP) on amyloid fibril formation of ß2-microglobulin (ß2m) and α-synuclein (αSyn). PolyP, consisting of up to 1,000 phosphoanhydride bond-linked phosphate monomers, is one of the most ancient, enigmatic, and negatively charged molecules in biology. Amyloid fibril formation of both ß2m and αSyn could be accelerated by counter anion-binding and preferential hydration at relatively lower and higher concentrations of polyP, respectively, depending on the chain length of polyP. These bimodal concentration-dependent effects were also observed in salt- and heparin-induced amyloid fibril formation, indicating the generality of bimodal effects. We also address the effects of detergents, alcohols, and isoelectric point precipitation on amyloid fibril formation, in comparison with the effects of salts. Because polyP is present all around us, from cellular components to food additives, clarifying its effects and consequent biological roles will be important to further advance our understanding of amyloid fibrils. This review article is an extended version of the Japanese article, Linking Protein Folding to Amyloid Formation, published in SEIBUTSU BUTSURI Vol. 61, p. 358-365 (2021).
RESUMEN
We developed a multichannel wireless quartz-crystal-microbalance (QCM) biosensor for mechanically studying the on-surface aggregation reaction of α-synuclein (α-syn). We find a quite unusual change in the resonant frequency that eventually exceeds the baseline, which has never been observed during seeding aggregation reaction. By incorporating a growth-to-percolation theory for fibril elongation reaction, we have favorably reproduced this unusual response and found that it can be explained only with formation of an ultrastiff fibril network. We also find that the stiffness of the fibril network grown from artificially prepared twist-type seeds is significantly higher than that from rod-type seeds. Furthermore, the stiffnesses of fibril networks grown from seeds derived from brain tissues of Parkinson's disease (PD) and multiple system atrophy (MSA) patients show a very similar trend to those of rod and twist seeds, respectively, indicating that fibrils from MSA patients are stiffer than those from PD.
Asunto(s)
Técnicas Biosensibles , Enfermedad de Parkinson , Humanos , alfa-Sinucleína , Cuarzo , AmiloideRESUMEN
The optical manipulation of nanoscale objects via structured light has attracted significant attention for its various applications, as well as for its fundamental physics. In such cases, the detailed behavior of nano-objects driven by optical forces must be precisely predicted and controlled, despite the thermal fluctuation of small particles in liquids. In this study, the optical forces of an optical vortex acting on gold nanoparticles (Au NPs) are visualized using dark-field microscopic observations in a nanofluidic channel with strictly suppressed forced convection. Manipulating Au NPs with an optical vortex allows the evaluation of the three optical force components, namely, gradient, scattering, and absorption forces, from the in-plane trajectory. We develop a Langevin dynamics simulation model coupled with Rayleigh scattering theory and compare the theoretical results with the experimental ones. Experimental results using Au NPs with diameters of 80-150 nm indicate that our experimental method can determine the radial trapping stiffness and tangential force with accuracies on the order of 0.1 fN/nm and 1 fN, respectively. Our experimental method will contribute to broadening not only applications of the optical-vortex manipulation of nano-objects, but also investigations of optical properties on unknown nanoscale materials via optical force analyses.
RESUMEN
Amyloid fibrils involved in amyloidoses are crystal-like aggregates, which are formed by breaking supersaturation of denatured proteins. Ultrasonication is an efficient method of agitation for breaking supersaturation and thus inducing amyloid fibrils. By combining an ultrasonicator and a microplate reader, we developed the HANABI (HANdai Amyloid Burst Inducer) system that enables high-throughput analysis of amyloid fibril formation. Among high-throughput approaches of amyloid fibril assays, the HANABI system has advantages in accelerating and detecting spontaneous amyloid fibril formation. HANABI is also powerful for amplifying a tiny amount of preformed amyloid fibrils by seeding. Thus, HANABI will contribute to creating therapeutic strategies against amyloidoses by identifying their biomarkers.
Asunto(s)
Amiloide , Amiloide/metabolismoRESUMEN
Parkinson's disease is a neurodegenerative disease characterized by the formation of neuronal inclusions of α-synuclein in patient brains. As the disease progresses, toxic α-synuclein aggregates transmit throughout the nervous system. No effective disease-modifying therapy has been established, and preventing α-synuclein aggregation is thought to be one of the most promising approaches to ameliorate the disease. In this study, we performed a two-step screening using the thioflavin T assay and a cell-based assay to identify α-synuclein aggregation inhibitors. The first screening, thioflavin T assay, allowed the identification of 30 molecules, among a total of 1262 FDA-approved small compounds, which showed inhibitory effects on α-synuclein fibrilization. In the second screening, a cell-based aggregation assay, seven out of these 30 candidates were found to prevent α-synuclein aggregation without causing substantial toxicity. Of the seven final candidates, tannic acid was the most promising compound. The robustness of our screening method was validated by a primary neuronal cell model and a Caenorhabditis elegans model, which demonstrated the effect of tannic acid against α-synuclein aggregation. In conclusion, our two-step screening system is a powerful method for the identification of α-synuclein aggregation inhibitors, and tannic acid is a promising candidate as a disease-modifying drug for Parkinson's disease.
Asunto(s)
Antiparkinsonianos/farmacología , Ensayos Analíticos de Alto Rendimiento , Neuronas/efectos de los fármacos , Enfermedad de Parkinson/tratamiento farmacológico , Agregación Patológica de Proteínas , Taninos/farmacología , alfa-Sinucleína/metabolismo , Animales , Animales Modificados Genéticamente , Antiparkinsonianos/toxicidad , Benzotiazoles/química , Bioensayo , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Modelos Animales de Enfermedad , Reposicionamiento de Medicamentos , Células HeLa , Humanos , Ratones Endogámicos C57BL , Neuronas/metabolismo , Neuronas/patología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Agregado de Proteínas , Espectrometría de Fluorescencia , Taninos/toxicidad , alfa-Sinucleína/genética , alfa-Sinucleína/ultraestructuraRESUMEN
Dialysis-related amyloidosis (DRA), a serious complication among long-term hemodialysis patients, is caused by amyloid fibrils of ß2-microglobulin (ß2m). Although high serum ß2m levels and a long dialysis vintage are the primary and secondary risk factors for the onset of DRA, respectively, patients with these do not always develop DRA, indicating that there are additional risk factors. To clarify these unknown factors, we investigate the effects of human sera on ß2m amyloid fibril formation, revealing that sera markedly inhibit amyloid fibril formation. Results from over 100 sera indicate that, although the inhibitory effects of sera deteriorate in long-term dialysis patients, they are ameliorated by maintenance dialysis treatments in the short term. Serum albumin prevents amyloid fibril formation based on macromolecular crowding effects, and decreased serum albumin concentration in dialysis patients is a tertiary risk factor for the onset of DRA. We construct a theoretical model assuming cumulative effects of the three risk factors, suggesting the importance of monitoring temporary and accumulated risks to prevent the development of amyloidosis, which occurs based on supersaturation-limited amyloid fibril formation in a crowded milieu.
Asunto(s)
Amiloidosis , Diálisis Renal , Amiloide , Amiloidosis/etiología , Amiloidosis/prevención & control , Humanos , Diálisis Renal/efectos adversos , Diálisis Renal/métodos , Albúmina Sérica , Microglobulina beta-2RESUMEN
Resistive-pulse analysis is a powerful tool for identifying micro- and nanoscale objects. For low-concentration specimens, the pulse responses are rare, and it is difficult to obtain a sufficient number of electrical waveforms to clearly characterize the targets and reduce noise. In this study, we conducted a periodic resistive-pulse analysis using an optical vortex and a double orifice, which repetitively senses a single micro- or nanoscale target particle with a diameter ranging from 700 nm to 2 [Formula: see text]m. The periodic motion results in the accumulation of a sufficient number of waveforms within a short period. Acquired pulses show periodic ionic-current drops associated with the translocation events through each orifice. Furthermore, a transparent fluidic device allows us to synchronously average the waveforms by the microscopic observation of the translocation events and improve the signal-to-noise ratio. By this method, we succeed in distinguishing single particle diameters. Additionally, the results of measured signals and the simultaneous high-speed observations are used to quantitatively and systematically discuss the effect of the complex fluid flow in the orifices on the amplitude of the resistive pulse. The synchronized resistive-pulse analysis by the optical vortex with the flow visualization improves the pulse-acquisition rate for a single specific particle and accuracy of the analysis, refining the micro- and nanoscale object identification.
RESUMEN
Ultrasonication to supersaturated protein solutions forcibly forms amyloid fibrils, thereby allowing the early-stage diagnosis for amyloidoses. Previously, we constructed a high-throughput sonoreactor to investigate features of the amyloid-fibril nucleation. Although the instrument substantiated the ultrasonication efficacy, several challenges remain; the key is the precise control of the acoustic field in the reactor, which directly affects the fibril-formation reaction. In the present study, we develop the optimized sonoreactor for the amyloid-fibril assay, which improves the reproducibility and controllability of the fibril formation. Using ß2-microglobulin, we experimentally demonstrate that achieving identical acoustic conditions by controlling oscillation amplitude and frequency of each transducer results in identical fibril-formation behavior across 36 solutions. Moreover, we succeed in detecting the 100-fM seeds using the developed sonoreactor at an accelerated rate. Finally, we reveal that the acceleration of the fibril-formation reaction with the seeds is achieved by enhancing the primary nucleation and the fibril fragmentation through the analysis of the fibril-formation kinetics. These results demonstrate the efficacy of the developed sonoreactor for the diagnosis of amyloidoses owing to the accelerative seed detection and the possibility for further early-stage diagnosis even without seeds through the accelerated primary nucleation.
Asunto(s)
Amiloide/metabolismo , Sonicación/instrumentación , Microscopía de Fuerza Atómica , Reproducibilidad de los ResultadosRESUMEN
Ultrasonication has been recently adopted in amyloid-fibril assays because of its ability to accelerate fibril formation, being promising in the early stage diagnosis of amyloidoses in clinical applications. Although applications of this technique are expanding in the field of protein science, its effects on the aggregation reactions of amyloidogenic proteins are poorly understood. In this study, we comprehensively investigated the morphology and structure of resultant aggregates, kinetics of fibril formation, and seed-detection sensitivity under ultrasonication using ß2-microglobulin and compared these characteristics under shaking, which has been traditionally adopted in amyloid-fibril assays. To discuss the ultrasonic effects on the amyloid-fibril formation, we propose the half-time heat map, which describes the phase diagram of the aggregation reaction of amyloidogenic proteins. The experimental results show that ultrasonication greatly promotes fibril formation, especially in dilute monomer solutions, induces short-dispersed fibrils, and is capable of detecting ultra-trace-concentration seeds with a detection limit of 10 fM. Furthermore, we indicate that ultrasonication highly alters the energy landscape of an aggregation reaction due to the effect of ultrasonic cavitation. These insights contribute not only to our understanding of the effects of agitation on amyloidogenic aggregation reactions but also to their effective application in the clinical diagnosis of amyloidoses.
Asunto(s)
Calor , Ultrasonido , Amiloide , Cinética , Microglobulina beta-2RESUMEN
We experimentally and theoretically characterize dielectric nano- and microparticle orbital motion induced by an optical vortex of the Laguerre-Gaussian beam. The key to stable orbiting of dielectric nanoparticles is hydrodynamic inter-particle interaction and microscale confinement of slit-like fluidic channels. As the number of particles in the orbit increases, the hydrodynamic inter-particle interaction accelerates orbital motion to overcome the inherent thermal fluctuation. The microscale confinement in the beam propagation direction helps to increase the number of trapped particles by reducing their probability of escape from the optical trap. The diameter of the orbit increases as the azimuthal mode of the optical vortex increases, but the orbital speed is shown to be insensitive to the azimuthal mode, provided that the number density of the particles in the orbit is same. We use experiments, simulation, and theory to quantify and compare the contributions of thermal fluctuation such as diffusion coefficients, optical forces, and hydrodynamic inter-particle interaction, and show that the hydrodynamic effect is significant for circumferential motion. The optical vortex beam with hydrodynamic inter-particle interaction and microscale confinement will contribute to biosciences and nanotechnology by aiding in developing new methods of manipulating dielectric and nanoscale biological samples in optical trapping communities.
RESUMEN
The aggregation behavior of amyloid-ß (Aß) peptides remains unclarified despite the fact that it is closely related to the pathogenic mechanism of Alzheimer's disease. Aß peptides form diverse oligomers with various diameters before nucleation, making clarification of the mechanism involved a complex problem with conventional macroscopic analysis methods. Time-resolved single-molecule level analysis in bulk solution is thus required to fully understand their early stage aggregation behavior. Here, we perform time-resolved observation of the aggregation dynamics of Aß oligomers in bulk solution using liquid-state transmission electron microscopy. Our observations reveal previously unknown behaviors. The most important discovery is that a salt crystal can precipitate even with a concentration much lower than its solubility, and it then dissolves in a short time, during which the aggregation reaction of Aß peptides is significantly accelerated. These findings will provide new insights in the evolution of the Aß oligomer.
Asunto(s)
Péptidos beta-Amiloides/química , Fragmentos de Péptidos/química , Sales (Química)/química , Imagen Individual de Molécula/métodos , Enfermedad de Alzheimer/metabolismo , Humanos , Cinética , Microscopía Electrónica de Transmisión , Modelos Moleculares , Agregado de Proteínas , Conformación Proteica , Solubilidad , Factores de TiempoRESUMEN
Amyloid-fibril formation of proteins can be accelerated by ultrasonic irradiation to the peptide solutions. Although this phenomenon contributes to understanding pathogenic behavior of amyloidosis, its physical mechanism has not been clarified, because several factors (cavitation, temperature increase, stirring effect, and so on) related to ultrasonic irradiation can participate in the fibrillation reaction. Here, we independently study contributions of the possible factors, using insulin, which is extremely stable and then suitable for the mechanism clarification. We find that the optimized ultrasonic irradiation can drastically accelerate the fibrillation reaction; the time for completing the reaction is shortened compared with the high-speed (1200rpm) stirring agitation by a factor of 430. The fibrillation reaction proceeds only when the subharmonic-mode intensity exceeds a threshold, indicating generation of the transient cavitation bubbles. Our results reveal that not the temperature increase but the transient cavitation bubbles work as the dominant accelerator of the fibrillation reaction.
Asunto(s)
Insulina/química , Multimerización de Proteína , Ondas Ultrasónicas , Cinética , Estructura Secundaria de ProteínaRESUMEN
Oligomer species of amyloid ß (Aß) peptides are intensively investigated because of their relevance to Alzheimer's disease (AD), and a stable oligomer will be a cause of AD. In this article, we investigate the structural stability of two representative Aß1-40 oligomers, which are with and without the ß-sheet structure, denoted by ß and non-ß oligomers, respectively, using optimized ultrasonic irradiation (OUI). Recent studies reveal that OUI significantly accelerates the fibril formation in Aß1-40 monomers; it is capable of transforming any unstable oligomers into fibrils (the dead-end products) in a short time. First, we find that ß oligomers can be produced under high-speed stirring agitation; their ß-sheet structures are evaluated by the circular-dichroism spectrum measurement, by the immunoassay using the fibril-specific OC antibody, and by the seeding experiment, showing identical characteristics to those formed in previous reports. Second, we form non-ß oligomers in a high-concentration NaCl solution and confirm that they include no ß-sheet structure, and they are recognized by the oligomer-specific A11 antibody. Furthermore, we confirm the neurotoxicity of the two types of oligomers using the neural tissue derived from mouse embryonic stem cells. We apply the OUI agitation to the ß and non-ß oligomers. The non-ß oligomers are transformed into the fibrils, indicating that they are intermediate species in the fibrillation pathway. However, the ß oligomers are surprisingly unaffected by OUI, indicating their high thermodynamic stability. We conclude that the ß oligomers should be the independent dead-end products of another pathway, different from the fibrillation pathway.