Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(20)2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37894981

RESUMEN

Germline manipulation at the zygote stage using the CRISPR/Cas9 system has been extensively employed for creating genetically modified animals and maintaining established lines. However, this approach requires a long and laborious task. Recently, many researchers have attempted to overcome these limitations by generating somatic mutations in the adult stage through tail vein injection or local administration of CRISPR reagents, as a new strategy called "in vivo somatic cell genome editing". This approach does not require manipulation of early embryos or strain maintenance, and it can test the results of genome editing in a short period. The newborn is an ideal stage to perform in vivo somatic cell genome editing because it is immune-privileged, easily accessible, and only a small amount of CRISPR reagents is required to achieve somatic cell genome editing throughout the entire body, owing to its small size. In this review, we summarize in vivo genome engineering strategies that have been successfully demonstrated in newborns. We also report successful in vivo genome editing through the neonatal introduction of genome editing reagents into various sites in newborns (as exemplified by intravenous injection via the facial vein), which will be helpful for creating models for genetic diseases or treating many genetic diseases.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Animales , Edición Génica/métodos , Sistemas CRISPR-Cas/genética , Animales Recién Nacidos , Cigoto
2.
Plant Biotechnol J ; 20(1): 37-46, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34459083

RESUMEN

High humidity during harvest season often causes pre-harvest sprouting in barley (Hordeum vulgare). Prolonged grain dormancy prevents pre-harvest sprouting; however, extended dormancy can interfere with malt production and uniform germination upon sowing. In this study, we used Cas9-induced targeted mutagenesis to create single and double mutants in QTL FOR SEED DORMANCY 1 (Qsd1) and Qsd2 in the same genetic background. We performed germination assays in independent qsd1 and qsd2 single mutants, as well as in two double mutants, which revealed a strong repression of germination in the mutants. These results demonstrated that normal early grain germination requires both Qsd1 and Qsd2 function. However, germination of qsd1 was promoted by treatment with 3% hydrogen peroxide, supporting the notion that the mutants exhibit delayed germination. Likewise, exposure to cold temperatures largely alleviated the block of germination in the single and double mutants. Notably, qsd1 mutants partially suppress the long dormancy phenotype of qsd2, while qsd2 mutant grains failed to germinate in the light, but not in the dark. Consistent with the delay in germination, abscisic acid accumulated in all mutants relative to the wild type, but abscisic acid levels cannot maintain long-term dormancy and only delay germination. Elucidation of mutant allele interactions, such as those shown in this study, are important for fine-tuning traits that will lead to the design of grain dormancy through combinations of mutant alleles. Thus, these mutants will provide the necessary germplasm to study grain dormancy and germination in barley.


Asunto(s)
Hordeum , Ácido Abscísico/farmacología , Germinación/genética , Hordeum/genética , Mutagénesis/genética , Latencia en las Plantas/genética , Sitios de Carácter Cuantitativo/genética , Semillas/genética
3.
Int J Mol Sci ; 23(5)2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35269691

RESUMEN

The rat is an important animal model for understanding gene function and developing human disease models. Knocking out a gene function in rats was difficult until recently, when a series of genome editing (GE) technologies, including zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the type II bacterial clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated Cas9 (CRISPR/Cas9) systems were successfully applied for gene modification (as exemplified by gene-specific knockout and knock-in) in the endogenous target genes of various organisms including rats. Owing to its simple application for gene modification and its ease of use, the CRISPR/Cas9 system is now commonly used worldwide. The most important aspect of this process is the selection of the method used to deliver GE components to rat embryos. In earlier stages, the microinjection (MI) of GE components into the cytoplasm and/or nuclei of a zygote was frequently employed. However, this method is associated with the use of an expensive manipulator system, the skills required to operate it, and the egg transfer (ET) of MI-treated embryos to recipient females for further development. In vitro electroporation (EP) of zygotes is next recognized as a simple and rapid method to introduce GE components to produce GE animals. Furthermore, in vitro transduction of rat embryos with adeno-associated viruses is potentially effective for obtaining GE rats. However, these two approaches also require ET. The use of gene-engineered embryonic stem cells or spermatogonial stem cells appears to be of interest to obtain GE rats; however, the procedure itself is difficult and laborious. Genome-editing via oviductal nucleic acids delivery (GONAD) (or improved GONAD (i-GONAD)) is a novel method allowing for the in situ production of GE zygotes existing within the oviductal lumen. This can be performed by the simple intraoviductal injection of GE components and subsequent in vivo EP toward the injected oviducts and does not require ET. In this review, we describe the development of various approaches for producing GE rats together with an assessment of their technical advantages and limitations, and present new GE-related technologies and current achievements using those rats in relation to human diseases.


Asunto(s)
Sistemas CRISPR-Cas , Ácidos Nucleicos , Animales , Sistemas CRISPR-Cas/genética , Femenino , Edición Génica/métodos , Genoma/genética , Humanos , Ratas , Nucleasas de los Efectores Tipo Activadores de la Transcripción/genética , Nucleasas con Dedos de Zinc/genética
4.
Int J Mol Sci ; 23(21)2022 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-36361535

RESUMEN

Infectious complications and subsequent sepsis in severely burned patients lead to high morbidity and mortality in response to uncontrolled innate immune responses mediated by macrophages. Peroxisome proliferator-activated receptor gamma (PPARγ) has anti-inflammatory activity and acts as a master regulator of macrophage polarization. In this study, we investigated whether the administration of a PPARγ agonist could modulate the Kupffer cell phenotype and thereby ameliorate the dysregulated innate response during post-burn bacterial infection. C57BL/6 mice were subjected to severe burns and randomized to receive either the PPARγ agonist, pioglitazone, or the vehicle control five days after injury, followed by the subsequent analysis of hepatic macrophages. Survival from the bacterial infection was monitored for seven days. Pioglitazone protected burned mice against bacterial infection. A single treatment with pioglitazone significantly enhanced phagocytosis, phagosome acidification, bacterial clearance, and reduction in inflammatory mediators in Kupffer cells. In conclusion, PPARγ activation by pioglitazone prevents clinical deterioration due to post-burn bacterial infection and improves survival. Our findings suggest that pioglitazone may be an effective therapeutic candidate for post-burn infectious complications.


Asunto(s)
Bacteriemia , Infecciones por Escherichia coli , Tiazolidinedionas , Animales , Ratones , Bacteriemia/tratamiento farmacológico , Escherichia coli , Infecciones por Escherichia coli/tratamiento farmacológico , Hipoglucemiantes/farmacología , Macrófagos del Hígado , Ratones Endogámicos C57BL , Pioglitazona/farmacología , PPAR gamma/genética , Tiazolidinedionas/farmacología , Tiazolidinedionas/uso terapéutico
5.
Mol Pain ; 17: 17448069211052167, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34823399

RESUMEN

Mirogabalin is a novel α2δ ligand approved in Japan for the treatment of peripheral neuropathic pain. However, the sites of action of α2δ ligands to produce analgesic effects on inflammatory pain remain unclear. In this study, we investigated the analgesic effect and site of action of mirogabalin using the rat formalin test, an acute inflammatory pain model. Mirogabalin was administered orally, intrathecally, and intracerebroventricularly. Open field tests were performed to evaluate the effect of oral-, intrathecally, and intracerebroventricularly administered mirogabalin on locomotor activity and orientation ability. Oral mirogabalin produced an analgesic effect when the formalin test was performed 4 h, but not 1 or 2 h, after oral administration. Intrathecal, but not intracerebroventricular, administration of mirogabalin produced analgesic effects when mirogabalin was administered 10 min before formalin injection. These analgesic effects were not antagonized by idazoxan, an α2 adrenergic antagonist; WAY100135, a 5-HT1A antagonist; or naloxone, an opioid receptor antagonist. Mirogabalin attenuated moving distances 1 and 2 h after oral administration and 10 min after intracerebroventricular administration, but not 10 min after intrathecal administration. In the oral administration group, the time course of the analgesic effect was different from that of moving distance. In the intracerebroventricular group, mirogabalin attenuated moving distances but did not produce an analgesic effect. In the intrathecal group, mirogabalin produced an analgesic effect but did not affect moving distances. These findings suggest that the analgesic effect of mirogabalin on the rat formalin test is mediated by spinal action and not by the activation of α2, 5-HT1A, or opioid receptors, and that the inhibitory effect of mirogabalin on moving distances is mediated by the supraspinal brain.


Asunto(s)
Analgésicos , Neuralgia , Analgésicos/farmacología , Analgésicos/uso terapéutico , Animales , Compuestos Bicíclicos con Puentes , Ligandos , Ratas
6.
Mol Pain ; 17: 1744806921992187, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33573476

RESUMEN

Neuropeptide W (NPW) messenger ribonucleic acid (mRNA) and NPBW1 and/or NPBW2 mRNA are expressed in the descending pain inhibitory system. In the present study, we examined whether NPW microinjected into the descending pain inhibitory system, such as the periaqueductal gray (PAG), locus coeruleus (LC), and rostral ventromedial medulla (RVM), produces an analgesic effect using a rat formalin test. Microinjections of NPW into the PAG ipsilateral and contralateral to the formalin-injected side, LC ipsilateral and contralateral to the formalin-injected side, and RVM produced an analgesic effect. In the RVM study, the analgesic effect was antagonized by WAY100135, a 5-HT1A antagonist, and enhanced by prazosin, an α1 antagonist, and SB269970, a 5-HT7 antagonist. Naloxone, an opioid antagonist, also antagonized the effect of NPW in the RVM study. In the ipsilateral LC study, the analgesic effect was antagonized by WAY100135, idazoxan, an α2 antagonist, and naloxone and was enhanced by prazosin and SB269970. In the contralateral LC study, the analgesic effect was antagonized by prazosin, idazoxan, SB269970, and naloxone. The analgesic effect was antagonized by WAY100135, SB269970, idazoxan, and naloxone in the ipsilateral and contralateral PAG studies. These findings strongly suggest that NPBW1/W2 activation by NPW microinjection into the RVM, LC, and PAG affect the descending pain modulatory system and produce anti-nociceptive and pro-nociceptive effects in the rat formalin test.


Asunto(s)
Analgésicos/farmacología , Neuropéptidos/farmacología , Dolor/patología , Receptores de Neuropéptido/metabolismo , Analgésicos/administración & dosificación , Animales , Formaldehído , Inyecciones , Ligandos , Locus Coeruleus/efectos de los fármacos , Masculino , Bulbo Raquídeo/efectos de los fármacos , Neuropéptidos/administración & dosificación , Sustancia Gris Periacueductal/efectos de los fármacos , Ratas Sprague-Dawley
7.
J Plant Res ; 133(2): 245-256, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32048094

RESUMEN

Abscisic acid (ABA) response element (ABRE)-binding factors (ABFs) are basic region/leucine zipper motif (bZIP) transcription factors that regulate the expression of ABA-induced genes containing ABRE in their promoters. The amino acid sequence of the wheat bZIP protein, TaABI5, showed high homology to that of Arabidopsis ABA insensitive 5 (ABI5). TaABI5 was classified into the clade of ABI5s in Arabidopsis and rice, unlike TRAB1 of rice, Wabi5 of wheat, and HvABI5 of barley in the bZIP Group A family, by a phylogenetic analysis. TaABI5 was strongly expressed in seeds during the late ripening and maturing stages; however, its expression level markedly decreased after germination. An in situ hybridization analysis showed that TaABI5 mRNA accumulated in seed embryos, particularly the scutellum. In a transient assay using wheat aleurone cells, TaABI5 activated the promoter of Em containing ABRE, which is an embryogenesis abundant protein gene, indicating that TaABI5 acts as a transcription factor in wheat seeds. Furthermore, the seeds of transgenic Arabidopsis lines introduced with 35S:TaABI5 exhibited high sensitivity to ABA and the inhibition of germination. The seed dormancy of the transgenic Arabidopsis lines was stronger than that of Col. These results support TaABI5 playing an important role in mature seeds, particularly before seed germination, and acting as a functional ortholog to Arabidopsis ABI5.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/fisiología , Germinación , Semillas/fisiología , Triticum/fisiología , Ácido Abscísico/farmacología , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Filogenia , Plantas Modificadas Genéticamente , Triticum/genética
8.
Int J Mol Sci ; 21(9)2020 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-32366059

RESUMEN

It is known that silver has microbicidal qualities; even at a low concentration, silver is active against many kinds of bacteria. Silver nanoparticles (AgNPs) have been extensively studied for a wide range of applications. Alternately, the toxicity of silver to human cells is considerably lower than that to bacteria. Recent studies have shown that AgNPs also have antiviral activity. We found that large amounts of hydroxyl radicals-highly reactive molecular species-are generated when AgNPs are irradiated with ultraviolet (UV) radiation with a wavelength of 365 nm, classified as ultraviolet A (UVA). In this study, we used electron spin resonance direct detection to confirm that UV irradiation of AgNPs produced rapid generation of hydroxyl radicals. As hydroxyl radicals are known to degrade bacteria, viruses, and some chemicals, the enhancement of the microbicidal activity of AgNPs by UV radiation could be valuable for the protection of healthcare workers and the prevention of the spread of infectious diseases.


Asunto(s)
Radical Hidroxilo/química , Nanopartículas del Metal/química , Plata/química , Rayos Ultravioleta , Personal de Salud/estadística & datos numéricos , Humanos
9.
Int J Mol Sci ; 21(11)2020 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-32545309

RESUMEN

Bioshell calcium oxide (BiSCaO) possesses deodorizing properties and broad microbicidal activity. This study aimed to investigate the application of BiSCaO ointment for the prevention and treatment of infection in chronic wounds in healing-impaired patients, without delaying wound healing. The bactericidal activities of 0.04, 0.2, 1, and 5 wt% BiSCaO ointment, 3 wt% povidone iodine ointment, and control (ointment only) were compared to evaluate the in vivo disinfection and healing of Pseudomonas aeruginosa-infected wounds in hairless rats. Treatment of the infected wounds with 0.2 wt% BiSCaO ointment daily for 3 days significantly enhanced wound healing and reduced the in vivo bacterial counts compared with povidone iodine ointment and control (no wound cleaning). Although 5 wt% BiSCaO ointment provided the lowest bacterial counts during 3 days' treatment, it delayed wound healing. Histological examinations showed significantly advanced granulation tissue and capillary formation in wounds treated with 0.2 wt% BiSCaO ointment for 3 days compared to wounds treated with the other ointments. This study suggested that using 0.2 wt% BiSCaO ointment as a disinfectant for infected wounds and limiting disinfection to 3 days may be sufficient to avoid the negative effects of BiSCaO on wound repair.


Asunto(s)
Antibacterianos/farmacología , Compuestos de Calcio/farmacología , Pomadas/farmacología , Óxidos/farmacología , Infecciones por Pseudomonas/tratamiento farmacológico , Infección de Heridas/tratamiento farmacológico , Exoesqueleto/química , Animales , Antibacterianos/química , Compuestos de Calcio/química , Desinfección/métodos , Masculino , Pomadas/química , Óxidos/química , Pectinidae/química , Povidona Yodada/farmacología , Infecciones por Pseudomonas/patología , Pseudomonas aeruginosa/efectos de los fármacos , Ratas sin Pelo , Infección de Heridas/microbiología , Infección de Heridas/patología
10.
Molecules ; 25(19)2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33019606

RESUMEN

Immediately post-production, commercially available bioshell calcium oxide (BiSCaO) water is colorless, transparent, and strongly alkaline (pH 12.8), and is known to possess deodorizing properties and broad microbicidal activity. However, BiSCaO Water may represent a serious safety risk to the living body, given the strong alkalinity. This study aimed to investigate the safety of BiSCaO Water for use as an antiseptic/disinfectant despite concerns regarding its high alkalinity. The change over time in pH of BiSCaO Water was measured during air contact (stirring BiSCaO Water in ambient air). When sprayed on metal, plastic, wood piece, paper, and skin surfaces, the pH of BiSCaO Water decreased rapidly, providing a white powder coating upon drying. Scanning electron microscopy images, energy dispersive X-ray elemental mapping, and X-ray diffractograms showed that the dried powder residues of BiSCaO Water were composed primarily of calcium carbonate. These results suggested that BiSCaO Water is a potent reagent that may overcome the obstacles of being strongly alkaline, making this material appropriate for use in disinfection against pathogenic microbes.


Asunto(s)
Materiales Biocompatibles/farmacología , Compuestos de Calcio/farmacología , Desinfección , Óxidos/farmacología , Piel/microbiología , Agua/farmacología , Animales , Coloides/química , Concentración de Iones de Hidrógeno , Microscopía Electrónica de Rastreo , Polvos , Ratas sin Pelo , Piel/efectos de los fármacos , Espectrometría por Rayos X , Suspensiones/química , Madera/química , Difracción de Rayos X
11.
Molecules ; 25(13)2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-32630051

RESUMEN

Bioshell calcium oxide (BiSCaO) exhibits deodorizing properties and broad microbicidal activity. In this study, we examined possible utility of BiSCaO Water for that purpose. BiSCaO Water was prepared by adding 10 wt% BiSCaO to clean water and gently collecting the supernatant in a bottle. The same volume of clean water was gently poured onto the BiSCaO precipitate and the supernatant was gently collected in a bottle; this process was repeated fifty times. The produced BiSCaO Water contained nanoparticles (about 400-800 nm) composed of smaller nanoparticles (100-200 nm), and was colorless and transparent, with a pH > 12.7. In vitro assays demonstrated that BiSCaO Water eliminated more than 99.9% of influenza A (H1N1) and Feline calicivirus, Escherichia coli such as NBRC 3972 and O-157:H7, Pseudomonas aeruginosa, Salmonella, and Staphylococcus aureus within 15 min. We compared BiSCaO Water with the other microbicidal reagents such as ethanol, BiSCaO, BiSCa(OH)2 suspensions, povidone iodine, NaClO, BiSCaO dispersion and colloidal dispersion with respect to deodorization activity and microbicidal efficacy. The results showed that BiSCaO Water was a potent reagent with excellent deodorization and disinfection activities against pathogenic bacteria and viruses (including both enveloped and nonenveloped viruses).


Asunto(s)
Bacterias/crecimiento & desarrollo , Compuestos de Calcio/farmacología , Óxidos/farmacología , Virus/crecimiento & desarrollo , Agua/farmacología , Bacterias/clasificación , Bacterias/efectos de los fármacos , Bacterias/aislamiento & purificación , Humanos , Virus/clasificación , Virus/efectos de los fármacos , Virus/aislamiento & purificación
12.
IUBMB Life ; 71(7): 835-844, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30635953

RESUMEN

Genome editing, as exemplified by CRISPR/Cas9, is now recognized as a powerful tool for the engineering of endogenous target genes. It employs only two components, namely, Cas9 in the form of DNA, mRNA, or protein; and guide RNA (gRNA), which is specific to a target gene. When these components are transferred to cells, they create insertion/deletion mutations (indels) within a target gene. Therefore, when fetuses within the uteri of pregnant murine females are exposed to these reagents, fetal cells incorporating them should show mutations in the target gene. To examine a possible genome editing of fetal cells in vivo, we intravenously administered a solution containing plasmid DNA-FuGENE complex to pregnant wild-type female mice [which had been successfully mated with enhanced green fluorescent protein (EGFP)-expressing male transgenic mice] on day 12.5 of gestation. The plasmid DNA induces the expression of gRNA, which was targeted at the EGFP cDNA, and that of the Cas9 gene. All fetuses in the pregnant females should express EGFP systemically, since they are heterozygous (Tg/+) for the transgene. Thus, the delivery of CRISPR system targeted at EGFP in the fetuses will cause a reduced expression of EGFP as a result of the genome editing of EGFP genomic sequence. Of the 24 fetuses isolated from three pregnant females 2 days after gene delivery, 3 were found to have reduced fluorescence in their hearts. Genotyping of the dissected hearts revealed the presence of the transgene construct (Cas9 gene) in all the samples. Furthermore, all the three samples exhibited mutations at the target loci, although normal cells were also present. Thus, transplacental delivery of gene editing components may be a useful tool for developing animal models with heart disorder for heart-related disease research, and gene therapy in congenital heart defects such as hypertrophic cardiomyopathy (HCM). © 2019 IUBMB Life, 9999(9999):1-10, 2019.


Asunto(s)
Feto/fisiología , Edición Génica , Proteínas Fluorescentes Verdes/genética , Corazón/embriología , Mutación , Miocitos Cardíacos/fisiología , ARN Guía de Kinetoplastida/genética , Animales , Proteína 9 Asociada a CRISPR/administración & dosificación , Proteína 9 Asociada a CRISPR/genética , Células Cultivadas , Femenino , Técnicas de Transferencia de Gen , Vectores Genéticos , Genoma , Corazón/fisiología , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Miocitos Cardíacos/citología , Plásmidos , ARN Guía de Kinetoplastida/administración & dosificación , Transgenes
13.
Int J Mol Sci ; 20(23)2019 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-31775372

RESUMEN

Transplacental gene delivery (TPGD) is a technique for delivering nucleic acids to fetal tissues via tail-vein injections in pregnant mice. After transplacental transport, administered nucleic acids enter fetal circulation and are distributed among fetal tissues. TPGD was established in 1995 by Tsukamoto et al., and its mechanisms, and potential applications have been further characterized since. Recently, discoveries of sequence specific nucleases, such as zinc-finger nuclease (ZFN), transcription activator-like effector nucleases (TALEN), and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 nuclease (Cas9) (CRISPR/Cas9), have revolutionized genome editing. In 2019, we demonstrated that intravenous injection of plasmid DNA containing CRISPR/Cas9 produced indels in fetal myocardial cells, which are comparatively amenable to transfection with exogenous DNA. In the future, this unique technique will allow manipulation of fetal cell functions in basic studies of fetal gene therapy. In this review, we describe developments of TPGD and discuss their applications to the manipulation of fetal cells.


Asunto(s)
Sistemas CRISPR-Cas , ADN/administración & dosificación , Feto/metabolismo , Edición Génica , Marcación de Gen , Terapia Genética , Placenta/metabolismo , Animales , Femenino , Ingeniería Genética , Ratones , Embarazo
14.
Int J Mol Sci ; 20(13)2019 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-31247905

RESUMEN

The pancreas is a glandular organ that functions in the digestive system and endocrine system of vertebrates. The most common disorders involving the pancreas are diabetes, pancreatitis, and pancreatic cancer. In vivo gene delivery targeting the pancreas is important for preventing or curing such diseases and for exploring the biological function of genes involved in the pathogenesis of these diseases. Our previous experiments demonstrated that adult murine pancreatic cells can be efficiently transfected by exogenous plasmid DNA following intraparenchymal injection and subsequent in vivo electroporation using tweezer-type electrodes. Unfortunately, the induced gene expression was transient. Transposon-based gene delivery, such as that facilitated by piggyBac (PB), is known to confer stable integration of a gene of interest (GOI) into host chromosomes, resulting in sustained expression of the GOI. In this study, we investigated the use of the PB transposon system to achieve stable gene expression when transferred into murine pancreatic cells using the above-mentioned technique. Expression of the GOI (coding for fluorescent protein) continued for at least 1.5 months post-gene delivery. Splinkerette-PCR-based analysis revealed the presence of the consensus sequence TTAA at the junctional portion between host chromosomes and the transgenes; however, this was not observed in all samples. This plasmid-based PB transposon system enables constitutive expression of the GOI in pancreas for potential therapeutic and biological applications.


Asunto(s)
Elementos Transponibles de ADN , Expresión Génica , Técnicas de Transferencia de Gen , Vectores Genéticos/genética , Páncreas/metabolismo , Transgenes , Animales , Femenino , Técnica del Anticuerpo Fluorescente , Orden Génico , Genes Reporteros , Ratones , Plásmidos , Transfección
15.
Int J Mol Sci ; 20(15)2019 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-31344881

RESUMEN

Silver is easily available and is known to have microbicidal effect; moreover, it does not impose any adverse effects on the human body. The microbicidal effect is mainly due to silver ions, which have a wide antibacterial spectrum. Furthermore, the development of multidrug-resistant bacteria, as in the case of antibiotics, is less likely. Silver ions bind to halide ions, such as chloride, and precipitate; therefore, when used directly, their microbicidal activity is shortened. To overcome this issue, silver nanoparticles (Ag NPs) have been recently synthesized and frequently used as microbicidal agents that release silver ions from particle surface. Depending on the specific surface area of the nanoparticles, silver ions are released with high efficiency. In addition to their bactericidal activity, small Ag NPs (<10 nm in diameter) affect viruses although the microbicidal effect of silver mass is weak. Because of their characteristics, Ag NPs are useful countermeasures against infectious diseases, which constitute a major issue in the medical field. Thus, medical tools coated with Ag NPs are being developed. This review outlines the synthesis and utilization of Ag NPs in the medical field, focusing on environment-friendly synthesis and the suppression of infections in healthcare workers (HCWs).


Asunto(s)
Infecciones/tratamiento farmacológico , Nanopartículas del Metal/uso terapéutico , Plata/uso terapéutico , Antibacterianos/efectos adversos , Antiinfecciosos/efectos adversos , Cloruros/química , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Personal de Salud , Humanos , Infecciones/microbiología , Iones/química , Nanopartículas del Metal/química , Plata/química
16.
Molecules ; 24(24)2019 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-31861225

RESUMEN

Heparinoid is the generic term that is used for heparin, heparan sulfate (HS), and heparin-like molecules of animal or plant origin and synthetic derivatives of sulfated polysaccharides. Various biological activities of heparin/HS are attributed to their specific interaction and regulation with various heparin-binding cytokines, antithrombin (AT), and extracellular matrix (ECM) biomolecules. Specific domains with distinct saccharide sequences in heparin/HS mediate these interactions are mediated and require different highly sulfated saccharide sequences with different combinations of sulfated groups. Multivalent and cluster effects of the specific sulfated sequences in heparinoids are also important factors that control their interactions and biological activities. This review provides an overview of heparinoid-based biomaterials that offer novel means of engineering of various heparin-binding cytokine-delivery systems for biomedical applications and it focuses on our original studies on non-anticoagulant heparin-carrying polystyrene (NAC-HCPS) and polyelectrolyte complex-nano/microparticles (N/MPs), in addition to heparin-coating devices.


Asunto(s)
Citocinas/química , Portadores de Fármacos/química , Heparina/química , Heparinoides/química , Animales , Anticoagulantes/química , Materiales Biocompatibles/química , Materiales Biocompatibles Revestidos/química , Citocinas/administración & dosificación , Matriz Extracelular/metabolismo , Heparitina Sulfato/química , Humanos , Estructura Molecular , Polisacáridos/química , Unión Proteica , Sulfatos/química
17.
Molecules ; 24(18)2019 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-31546939

RESUMEN

Scallop-shell powder (SSP) heated at high temperature exhibits high pH and broad antimicrobial activity. Bioshell calcium oxide (BiSCaO) is an SSP composed mainly of calcium oxide. It is poorly water-soluble under alkaline conditions and the generated precipitate can plug spray nozzles. The aim of this study was to establish that BiSCaO dispersion caused no significant CaO loss and plugging of spray nozzles, and to evaluate its deodorization and microbicidal abilities and its ability to reduce the concentrations of NO2- and NO3-. BiSCaO dispersions were prepared by mixing various concentrations of BiSCaO suspension, while phosphate compounds such as Na3PO4, Na2HPO4 or NaH2PO4 and the pH, average diameter, zeta potential, and form of the compounds with cryo-SEM were evaluated. We evaluated deodorization using tainted pork meat and microbicidal efficacy using contaminated suspension with normal bacterial flora. The concentration of NO2- and NO3- after mixing BiSCaO dispersion and pure water containing a high proportion of NO2- and NO3- were measured. BiSCaO dispersion formed with Na2HPO4, whose ratio to BiSCaO was 60%, showed a high pH (>12), a small particle diameter (>181 nm) and was stable for seven days. The BiSCaO dispersion showed higher deodorization and microbicidal activities than SSP-Ca(OH)2, which was mainly composed of Ca(OH)2. BiSCaO, but not SSP-Ca(OH)2, could reduce the concentration of NO2- and NO3- by more than 90% within 15 min. We developed a stable BiSCaO dispersion, and it had high deodorization and microbicidal efficacy. These activities of BiSCaO might result from the high pH caused by CaO hydration and a reduction activity causing active radical species.


Asunto(s)
Exoesqueleto/química , Antibacterianos/farmacología , Compuestos de Calcio/farmacología , Nanopartículas/química , Óxidos/farmacología , Animales , Nanopartículas/ultraestructura , Nitratos/análisis , Nitritos/análisis , Tamaño de la Partícula , Pectinidae/química , Ácidos Fosfóricos/química , Suspensiones , Porcinos
18.
Breed Sci ; 68(3): 295-304, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30100796

RESUMEN

Pre-harvest sprouting (PHS) remains a long-standing problem for the production of barley (Hordeum vulgare) and wheat (Triticum aestivum) worldwide. Grain dormancy, a key trait for the prevention of PHS, controls the timing of germination. Discovery of the causal sequence polymorphisms (CSPs) that produce naturally occurring variation in dormancy will help improve PHS tolerance. The identification of CSPs for dormancy remains difficult, especially for barley and wheat, because they are the last major cereals to have their genomes sequenced. However, recent work has identified several important CSPs that play pivotal roles in fine-tuning the dormancy levels in barley and wheat cultivars. This review summarizes these recent advances, which can be directly applied in breeding programs to improve PHS tolerance. These recent findings indicate the possibility that barley and wheat cultivars grown in East Asia, where much rain falls during the harvest season, will be rich sources of alleles that confer strong dormancy, since these cultivars have been selected to cope with the regional climate. The newly discovered dormant alleles will be useful for improving PHS tolerance around the world, just as Reduced-height (Rht) alleles from Japanese wheat varieties contributed to yield increases for the Green Revolution.

19.
Int J Mol Sci ; 19(4)2018 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-29617297

RESUMEN

Recent advances in genome editing systems such as clustered regularly interspaced short palindromic repeats/CRISPR-associated protein-9 nuclease (CRISPR/Cas9) have facilitated genomic modification in mammalian cells. However, most systems employ transient treatment with selective drugs such as puromycin to obtain the desired genome-edited cells, which often allows some untransfected cells to survive and decreases the efficiency of generating genome-edited cells. Here, we developed a novel targeted toxin-based drug-free selection system for the enrichment of genome-edited cells. Cells were transfected with three expression vectors, each of which carries a guide RNA (gRNA), humanized Cas9 (hCas9) gene, or Clostridium perfringens-derived endo-β-galactosidase C (EndoGalC) gene. Once EndoGalC is expressed in a cell, it digests the cell-surface α-Gal epitope, which is specifically recognized by BS-I-B4 lectin (IB4). Three days after transfection, these cells were treated with cytotoxin saporin-conjugated IB4 (IB4SAP) for 30 min at 37 °C prior to cultivation in a normal medium. Untransfected cells and those weakly expressing EndoGalC will die due to the internalization of saporin. Cells transiently expressing EndoGalC strongly survive, and some of these surviving clones are expected to be genome-edited bi-allelic knockout (KO) clones due to their strong co-expression of gRNA and hCas9. When porcine α-1,3-galactosyltransferase gene, which can synthesize the α-Gal epitope, was attempted to be knocked out, 16.7% and 36.7% of the surviving clones were bi-allelic and mono-allelic knockout (KO) cells, respectively, which was in contrast to the isolation of clones in the absence of IB4SAP treatment. Namely, 0% and 13.3% of the resulting clones were bi-allelic and mono-allelic KO cells, respectively. A similar tendency was seen when other target genes such as DiGeorge syndrome critical region gene 2 and transforming growth factor-β receptor type 1 gene were targeted to be knocked out. Our results indicate that a combination of the CRISPR/Cas9 system and targeted toxin technology using IB4SAP allows efficient enrichment of genome-edited clones, particularly bi-allelic KO clones.


Asunto(s)
Sistemas CRISPR-Cas , Marcación de Gen , Toxinas Biológicas/genética , Alelos , Animales , Secuencia de Bases , Edición Génica , Técnicas de Inactivación de Genes , Vectores Genéticos , Genotipo , Glicósido Hidrolasas/genética , Humanos , Mutación INDEL , Mamíferos/genética , ARN Guía de Kinetoplastida
20.
Int J Mol Sci ; 19(11)2018 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-30400245

RESUMEN

Hydrodynamics-based gene delivery (HGD) is an efficient method for transfecting plasmid DNA into hepatocytes in vivo. However, the resulting gene expression is transient, and occurs in a non-tissue specific manner. The piggyBac (PB) transposon system allows chromosomal integration of a transgene in vitro. This study aimed to achieve long-term in vivo expression of a transgene by performing hepatocyte-specific chromosomal integration of the transgene using PB and HGD. Using this approach, we generated a novel mouse model for a hepatic disorder. A distinct signal from the reporter plasmid DNA was discernible in the murine liver approximately two months after the administration of PB transposons carrying a reporter gene. Then, to induce the hepatic disorder, we first administered mice with a PB transposon carrying a CETD unit (loxP-flanked stop cassette, diphtheria toxin-A chain gene, and poly(A) sites), and then with a plasmid expressing the Cre recombinase under the control of a liver-specific promoter. We showed that this system can be used for in situ manipulation and analysis of hepatocyte function in vivo in non-transgenic (Tg) animals.


Asunto(s)
Elementos Transponibles de ADN/genética , Terapia Genética , Hígado/metabolismo , Administración Intravenosa , Animales , Pollos , Técnicas de Transferencia de Gen , Hidrodinámica , Integrasas/metabolismo , Hígado/patología , Masculino , Ratones Endogámicos ICR , Especificidad de Órganos , Recombinación Genética/genética , Suero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA