Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Cell ; 154(6): 1314-25, 2013 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-24034253

RESUMEN

G-protein-coupled receptors (GPCRs) are known to possess two different conformations, active and inactive, and they spontaneously alternate between the two in the absence of ligands. Here, we analyzed the agonist-independent GPCR activity for its possible role in receptor-instructed axonal projection. We generated transgenic mice expressing activity mutants of the ß2-adrenergic receptor, a well-characterized GPCR with the highest homology to odorant receptors (ORs). We found that mutants with altered agonist-independent activity changed the transcription levels of axon-targeting molecules--e.g., Neuropilin-1 and Plexin-A1--but not of glomerular segregation molecules--e.g., Kirrel2 and Kirrel3--thus causing shifts in glomerular locations along the anterior-posterior (A-P) axis. Knockout and in vitro experiments demonstrated that Gs, but not Golf, is responsible for mediating the agonist-independent GPCR activity. We conclude that the equilibrium of conformational transitions set by each OR is the major determinant of expression levels of A-P-targeting molecules.


Asunto(s)
Axones/metabolismo , Vías Olfatorias/embriología , Receptores Odorantes/metabolismo , Células Receptoras Sensoriales/metabolismo , Agonistas de Receptores Adrenérgicos beta 2/metabolismo , Animales , Ratones , Ratones Noqueados , Ratones Transgénicos , Vías Olfatorias/citología , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo , Receptores Odorantes/genética
2.
Genesis ; 62(3): e23610, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38874301

RESUMEN

The organization of the olfactory glomerular map involves the convergence of olfactory sensory neurons (OSNs) expressing the same odorant receptor (OR) into glomeruli in the olfactory bulb (OB). A remarkable feature of the olfactory glomerular map formation is that the identity of OR instructs the topography of the bulb, resulting in thousands of discrete glomeruli in mice. Several lines of evidence indicate that ORs control the expression levels of various kinds of transmembrane proteins to form glomeruli at appropriate regions of the OB. In this review, we will discuss how the OR identity is decoded by OSNs into gene expression through intracellular regulatory mechanisms.


Asunto(s)
Bulbo Olfatorio , Neuronas Receptoras Olfatorias , Receptores Odorantes , Animales , Ratones , Bulbo Olfatorio/metabolismo , Neuronas Receptoras Olfatorias/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/metabolismo
3.
Glia ; 69(4): 890-904, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33119934

RESUMEN

Brain-derived neurotrophic factor (BDNF), a main member of the neurotrophin family that is active in the brain, supports neuronal survival and growth. Microglial BDNF affects both the structural and functional properties of neurons. In contrast, whether and how neuronal BDNF affects microglial dynamics remain largely undetermined. Here, we examined the effects of BDNF on the properties of microglia in the CA3 region of the hippocampus. We chose this site because the axonal boutons of hippocampal mossy fibers, which are mostly formed in the CA3 region, contain the highest levels of BDNF in the rodent brain. We transfected mouse dentate granule cells with an adeno-associated virus that encodes both a BDNF short hairpin RNA (shRNA) and red fluorescent protein to examine the effects of mossy fiber-derived BDNF on microglia. Based on immunohistochemistry, BDNF knockdown with an shRNA resulted in an increase in microglial density in the mossy fiber pathway and increased engulfment of mossy fiber axons by microglia. In addition, we performed time-lapse imaging of microglial processes in hippocampal slice cultures to examine the effects of BDNF on microglial motility. Time-lapse imaging revealed increases in the motility of microglial processes and the engulfment of mossy fiber synapses by microglia when BDNF signaling was pharmacologically blocked. Thus, neuronal BDNF prevents microglia from engulfing mossy fiber synapses in the hippocampus.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Microglía , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Hipocampo/metabolismo , Ratones , Microglía/metabolismo , Fibras Musgosas del Hipocampo/metabolismo , ARN Interferente Pequeño/genética
4.
Eur J Neurosci ; 48(10): 3246-3254, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30075483

RESUMEN

The olfactory piriform cortex (PC) is thought to participate in olfactory associative memory. Like the hippocampus, which is essential for episodic memory, it belongs to an evolutionally conserved paleocortex and comprises a three-layered cortical structure. During slow-wave sleep, the olfactory PC becomes less responsive to external odor stimuli and instead displays sharp wave (SPW) activity similar to that observed in the hippocampus. Neural activity patterns during hippocampal SPW have been intensively studied in terms of memory consolidation; however, little is known about the activity patterns of olfactory cortical neurons during olfactory cortex sharp waves (OC-SPWs). In this study, we recorded multi-unit neural activities in the anterior PC in urethane-anesthetized mice. We found that the activity patterns of olfactory cortical neurons during OC-SPWs were non-randomly organized. Individual olfactory cortical neurons varied in the timings of their peak firing rates during OC-SPW events. Moreover, specific pairs of olfactory cortical neurons were more frequently activated together than expected by chance. On the basis of these observations, we speculate that coordinated activation of specific subsets of olfactory cortical neurons repeats during OC-SPWs, thereby facilitating synaptic plasticity underlying the consolidation of olfactory associative memories.


Asunto(s)
Ondas Encefálicas/fisiología , Neuronas/fisiología , Corteza Piriforme/fisiología , Animales , Femenino , Masculino , Consolidación de la Memoria/fisiología , Ratones , Plasticidad Neuronal/fisiología
5.
Eur J Neurosci ; 44(3): 1998-2003, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27207328

RESUMEN

In the mouse olfactory system, the axons of olfactory sensory neurons that express the same type of odorant receptor (OR) converge to a specific set of glomeruli in the olfactory bulb (OB). It is widely accepted that expressed OR molecules instruct glomerular segregation by regulating the expression of axon-sorting molecules. Although the relationship between the expression of axon-sorting molecules and OR types has been analyzed in detail, those between the expressions of axon-sorting molecules remain to be elucidated. Here we collected the expression profiles of four axon-sorting molecules from a large number of glomeruli in the OB. These molecules demonstrated position-independent mosaic expressions, but their patterns were not identical in the OB. Comparing their expressions identified positive and negative correlations between several pairs of genes even though they showed various expressions. Furthermore, the principal component analysis revealed that the factor loadings in the principal component 1, which explain the largest amount of variation, were most likely to reflect the degree of the cyclic nucleotide-gated (CNG) channel dependence on the expression of axon-sorting molecules. Thus, neural activity generated through the CNG channel is a major component in the generation of a wide variety of expressions of axon-sorting molecules in glomerular segregation.


Asunto(s)
Axones/metabolismo , Neuronas Receptoras Olfatorias/metabolismo , Animales , Antígenos CD/genética , Antígenos CD/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Inmunoglobulinas/genética , Inmunoglobulinas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Semaforinas/genética , Semaforinas/metabolismo
6.
Front Neural Circuits ; 18: 1409680, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38860141

RESUMEN

The brain constructs spatially organized sensory maps to represent sensory information. The formation of sensory maps has traditionally been thought to depend on synchronous neuronal activity. However, recent evidence from the olfactory system suggests that cell type-specific temporal patterns of spontaneous activity play an instructive role in shaping the olfactory glomerular map. These findings challenge traditional views and highlight the importance of investigating the spatiotemporal dynamics of neural activity to understand the development of complex neural circuits. This review discusses the implications of new findings in the olfactory system and outlines future research directions.


Asunto(s)
Vías Olfatorias , Animales , Vías Olfatorias/fisiología , Vías Olfatorias/citología , Humanos , Red Nerviosa/fisiología , Neuronas/fisiología , Bulbo Olfatorio/fisiología , Bulbo Olfatorio/citología
7.
Neurosci Res ; 170: 1-5, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32621834

RESUMEN

The development of precise neural circuits is initially directed by genetic programming and subsequently refined by neural activity. In the mouse olfactory system, axons from various olfactory sensory neurons expressing the same olfactory receptor converge onto a few spatially invariant glomeruli, generating the olfactory glomerular map in the olfactory bulbs. Using the glomerular map formation as a model, this review summarizes the current understanding of mechanisms underlying topographic map development in the mouse olfactory system and highlights how neural activity instructs the map refinement process.


Asunto(s)
Neuronas Receptoras Olfatorias , Receptores Odorantes , Animales , Axones/metabolismo , Ratones , Bulbo Olfatorio/metabolismo , Neuronas Receptoras Olfatorias/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/metabolismo
8.
Proc Natl Acad Sci U S A ; 104(50): 20067-72, 2007 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-18077433

RESUMEN

We have previously reported that a 2.1-kb homology (H) sequence, conserved between mouse and human, regulates the odorant receptor (OR) gene MOR28 in transgenic mice. Here, we narrowed down the essential sequences of the H to a core of 124 bp by using a transient expression system in zebrafish embryos. Transgenic experiments in mice demonstrated that the core-H sequence is sufficient to endow expression of the MOR28 minigene. Deletion and mutation analyses of the core-H region revealed two homeodomain sequences to be essential for the H enhancer activity. Targeted deletion of the core-H abolished expression of three proximal OR genes, MOR28, MOR10, and MOR83, in cis, indicating the presence of another locus control region/enhancer in the downstream region, that regulates four distal OR genes in the same MOR28 cluster. In the heterozygous mice, the H(-) phenotype of the mutant allele was not rescued by the wild-type H(+) allele in trans.


Asunto(s)
Regulación de la Expresión Génica/genética , Región de Control de Posición/genética , Receptores Odorantes/genética , Animales , Secuencia de Bases , Humanos , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Receptores Odorantes/antagonistas & inhibidores , Receptores Odorantes/biosíntesis , Receptores Odorantes/deficiencia , Eliminación de Secuencia , Pez Cebra/embriología , Pez Cebra/genética
9.
Nat Commun ; 11(1): 1104, 2020 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-32107377

RESUMEN

Structural elucidation and molecular scrutiny of cerebral vasculature is crucial for understanding the functions and diseases of the brain. Here, we introduce SeeNet, a method for near-complete three-dimensional visualization of cerebral vascular networks with high signal-to-noise ratios compatible with molecular phenotyping. SeeNet employs perfusion of a multifunctional crosslinker, vascular casting by temperature-controlled polymerization of hybrid hydrogels, and a bile salt-based tissue-clearing technique optimized for observation of vascular connectivity. SeeNet is capable of whole-brain visualization of molecularly characterized cerebral vasculatures at the single-microvessel level. Moreover, SeeNet reveals a hitherto unidentified vascular pathway bridging cerebral and hippocampal vessels, thus serving as a potential tool to evaluate the connectivity of cerebral vasculature.


Asunto(s)
Encéfalo/diagnóstico por imagen , Capilares/diagnóstico por imagen , Circulación Cerebrovascular , Técnicas de Preparación Histocitológica/métodos , Imagenología Tridimensional , Animales , Ácidos y Sales Biliares/química , Encéfalo/irrigación sanguínea , Encéfalo/patología , Reactivos de Enlaces Cruzados/química , Colorantes Fluorescentes/química , Hidrogeles/química , Sustancias Luminiscentes/química , Proteínas Luminiscentes/química , Proteínas Luminiscentes/genética , Ratones , Microscopía Fluorescente/métodos , Perfusión , Polimerizacion , Relación Señal-Ruido , Proteína Fluorescente Roja
10.
Science ; 365(6448)2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-31171707

RESUMEN

Neural circuits emerge through the interplay of genetic programming and activity-dependent processes. During the development of the mouse olfactory map, axons segregate into distinct glomeruli in an olfactory receptor (OR)-dependent manner. ORs generate a combinatorial code of axon-sorting molecules whose expression is regulated by neural activity. However, it remains unclear how neural activity induces OR-specific expression patterns of axon-sorting molecules. We found that the temporal patterns of spontaneous neuronal spikes were not spatially organized but were correlated with the OR types. Receptor substitution experiments demonstrated that ORs determine spontaneous activity patterns. Moreover, optogenetically differentiated patterns of neuronal activity induced specific expression of the corresponding axon-sorting molecules and regulated axonal segregation. Thus, OR-dependent temporal patterns of spontaneous activity play instructive roles in generating the combinatorial code of axon-sorting molecules during olfactory map formation.


Asunto(s)
Neurogénesis/genética , Vías Olfatorias/crecimiento & desarrollo , Neuronas Receptoras Olfatorias/metabolismo , Receptores Odorantes/fisiología , Animales , Axones/metabolismo , Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Mutantes , Vías Olfatorias/metabolismo , Optogenética , Receptores Odorantes/genética
11.
Neuroreport ; 30(13): 908-913, 2019 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-31373971

RESUMEN

Genetic manipulation of protein levels is a promising approach to identify the function of a specific protein in living organisms. Previous studies demonstrated that the auxin-inducible degron strategy provides rapid and reversible degradation of various proteins in fungi and mammalian mitotic cells. In this study, we employed this technology to postmitotic neurons to address whether the auxin-inducible degron system could be applied to the nervous system. Using adeno-associated viruses, we simultaneously introduced enhanced green fluorescent protein (EGFP) fused with an auxin-inducible degron tag and an F-box family protein, TIR1 from Oryza sativa (OsTIR1), into hippocampal neurons from mice. In dissociated hippocampal neurons, EGFP enhanced green fluorescent protein fluorescence signals rapidly decreased when adding a plant hormone, auxin. Furthermore, auxin-induced enhanced green fluorescent protein degradation was also observed in hippocampal acute slices. Taken together, these results open the door for neuroscientists to manipulate protein expression levels by the auxin-inducible degron system in a temporally controlled manner.


Asunto(s)
Hipocampo/metabolismo , Ácidos Indolacéticos/metabolismo , Neuronas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteolisis , Animales , Animales Recién Nacidos , Células Cultivadas , Proteínas Fluorescentes Verdes/metabolismo , Hipocampo/efectos de los fármacos , Ácidos Indolacéticos/farmacología , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/fisiología , Proteolisis/efectos de los fármacos
12.
Neuron ; 81(1): 165-78, 2014 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-24361078

RESUMEN

Musk odorants are used widely in cosmetic industries because of their fascinating animalic scent. However, how this aroma is perceived in the mammalian olfactory system remains a great mystery. Here, we show that muscone, one musk odor secreted by various animals from stink glands, activates a few glomeruli clustered in a neuroanatomically unique anteromedial olfactory bulb. The muscone-responsive glomeruli are highly specific to macrocyclic ketones; interestingly, other synthetic musk odorants with nitro or polycyclic moieties or ester bonds activate distinct but nearby glomeruli. Anterodorsal bulbar lesions cause muscone anosmia, suggesting that this region is involved in muscone perception. Finally, we identified the mouse olfactory receptor, MOR215-1, that was a specific muscone receptor expressed by neurons innervating the muscone-responsive anteromedial glomeruli and also the human muscone receptor, OR5AN1. The current study documents the olfactory neural pathway in mice that senses and transmits musk signals from receptor to brain.


Asunto(s)
Ácidos Grasos Monoinsaturados , Bulbo Olfatorio/citología , Vías Olfatorias/fisiología , Neuronas Receptoras Olfatorias/fisiología , Olfato/fisiología , Animales , Colforsina/farmacología , Cicloparafinas/farmacología , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Odorantes , Bulbo Olfatorio/cirugía , Vías Olfatorias/efectos de los fármacos , Neuronas Receptoras Olfatorias/efectos de los fármacos , Proteínas Proto-Oncogénicas c-fos/metabolismo , Receptores Odorantes/genética , Olfato/efectos de los fármacos , Xenopus laevis
13.
Dev Neurobiol ; 73(11): 828-40, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23821580

RESUMEN

In the mouse olfactory system, the anatomical locations of olfactory sensory neurons (OSNs) correlate with their axonal projection sites along the dorsoventral axis of the olfactory bulb (OB). We have previously reported that Neuropilin-2 expressed by ventral-zone OSNs contributes to the segregation of dorsal and ventral OSN axons, and that Slit is acting as a negative land mark to restrict the projection of Robo2+, early-arriving OSN axons to the embryonic OB. Here, we report that another guidance receptor, Robo1, also plays an important role in guiding OSN axons. Knockout mice for Robo1 demonstrated defects in targeting of OSN axons to the OB. Although Robo1 is colocalized with dorsal-zone OSN axons, it is not produced by OSNs, but instead by olfactory ensheathing cells. These findings indicate a novel strategy of axon guidance in the mouse olfactory system during development.


Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/fisiología , Neuronas Receptoras Olfatorias/embriología , Neuronas Receptoras Olfatorias/metabolismo , Receptores Inmunológicos/metabolismo , Animales , Inmunohistoquímica , Hibridación in Situ , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Bulbo Olfatorio/embriología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas Roundabout
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA