Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Neurochem ; 158(3): 694-709, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34081777

RESUMEN

Gangliosides are glycosphingolipids abundantly expressed in the vertebrate nervous system, and are classified into a-, b-, or c-series according to the number of sialic acid residues. The enzyme GD3 synthase converts GM3 (an a-series ganglioside) into GD3, a b-series ganglioside highly expressed in the developing and adult retina. The present study evaluated the visual system of GD3 synthase knockout mice (GD3s-/- ), morphologically and functionally. The absence of b- series gangliosides in the retinas of knockout animals was confirmed by mass spectrometry imaging, which also indicated an accumulation of a-series gangliosides, such as GM3. Retinal ganglion cell (RGC) density was significantly reduced in GD3s-/- mice, with a similar reduction in the number of axons in the optic nerve. Knockout animals also showed a 15% reduction in the number of photoreceptor nuclei, but no difference in the bipolar cells. The area occupied by GFAP-positive glial cells was smaller in GD3s-/- retinas, but the number of microglial cells/macrophages did not change. In addition to the morphological alterations, a 30% reduction in light responsiveness was detected through quantification of pS6-expressing RGC, an indicator of neural activity. Furthermore, electroretinography (ERG) indicated a significant reduction in RGC and photoreceptor electrical activity in GD3s-/- mice, as indicated by scotopic ERG and pattern ERG (PERG) amplitudes. Finally, evaluation of the optomotor response demonstrated that GD3s-/- mice have reduced visual acuity and contrast sensitivity. These results suggest that b-series gangliosides play a critical role in regulating the structure and function of the mouse visual system.


Asunto(s)
Sensibilidad de Contraste/fisiología , Eliminación de Gen , Retina/enzimología , Sialiltransferasas/deficiencia , Sialiltransferasas/genética , Agudeza Visual/fisiología , Animales , Electrorretinografía/métodos , Femenino , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Noqueados , Estimulación Luminosa/métodos
2.
Gene Ther ; 27(1-2): 27-39, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31243393

RESUMEN

After an injury, axons in the central nervous system do not regenerate over large distances and permanently lose their connections to the brain. Two promising approaches to correct this condition are cell and gene therapies. In the present work, we evaluated the neuroprotective and neuroregenerative potential of pigment epithelium-derived factor (PEDF) gene therapy alone and combined with human mesenchymal stem cell (hMSC) therapy after optic nerve injury by analysis of retinal ganglion cell survival and axonal outgrowth. Overexpression of PEDF by intravitreal delivery of AAV2 vector significantly increased Tuj1-positive cells survival and modulated FGF-2, IL-1ß, Iba-1, and GFAP immunostaining in the ganglion cell layer (GCL) at 4 weeks after optic nerve crush, although it could not promote axonal outgrowth. The combination of AAV2.PEDF and hMSC therapy showed a higher number of Tuj1-positive cells and a pronounced axonal outgrowth than unimodal therapy after optic nerve crush. In summary, our results highlight a synergistic effect of combined gene and cell therapy relevant for future therapeutic interventions regarding optic nerve injury.


Asunto(s)
Proteínas del Ojo/farmacología , Factores de Crecimiento Nervioso/farmacología , Traumatismos del Nervio Óptico/terapia , Células Ganglionares de la Retina/efectos de los fármacos , Serpinas/farmacología , Animales , Axones/fisiología , Línea Celular Tumoral , Supervivencia Celular , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Modelos Animales de Enfermedad , Proteínas del Ojo/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Masculino , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/metabolismo , Compresión Nerviosa , Factores de Crecimiento Nervioso/metabolismo , Regeneración Nerviosa , Neuroprotección , Nervio Óptico , Ratas Wistar , Retina , Células Ganglionares de la Retina/metabolismo , Serpinas/metabolismo
3.
Exp Eye Res ; 200: 108212, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32910940

RESUMEN

PURPOSE: Cellular therapy with mesenchymal stem cells (MSC) is emerging as an effective option to treat optic neuropathies. In models of retinal degeneration, MSC injected in the vitreous body protects injured retinal ganglion cells and stimulate their regeneration, however the mechanism is still unknown. Considering the immunomodulating proprieties of MSC and the controversial role of microglial contribution on retinal regeneration, we developed an in vitro co-culture model to analyze the effect of MSC on retinal microglia population. METHODS: We used whole adult rat retinal explants in co-culture with human Wharton's jelly mesenchymal stem cells (hMSC) separated by a transwell membrane and analyzed hMSC effect on both retinal ganglion cells (RGCs) and retinal microglia. RESULTS: hMSC in co-culture protected RGCs after 3 days in vitro by paracrine signaling. In addition, hMSC reduced microglia population and inhibited the pro-inflammatory phenotype of the remaining microglia. CONCLUSIONS: Using a co-culture model, we demonstrated the paracrine effect of hMSC on RGC survival after injury concomitant with a reduction of microglial population. Paracrine signaling of hMSC also changed microglia phenotype and the expression of antiinflammatory factors in the retina. Our results are consistent with a detrimental effect of microglia on RGC survival and regeneration after injury.


Asunto(s)
Células Madre Mesenquimatosas/citología , Microglía/patología , Regeneración Nerviosa , Comunicación Paracrina/fisiología , Degeneración Retiniana/diagnóstico , Células Ganglionares de la Retina/patología , Animales , Supervivencia Celular , Tratamiento Basado en Trasplante de Células y Tejidos , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Femenino , Masculino , Microglía/metabolismo , Fenotipo , Ratas , Degeneración Retiniana/metabolismo , Células Ganglionares de la Retina/metabolismo
4.
Front Cell Dev Biol ; 10: 956279, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36035999

RESUMEN

Retinal ganglion cells (RGCs) are a heterogeneous population of neurons that function synchronously to convey visual information through the optic nerve to retinorecipient target areas in the brain. Injury or disease to the optic nerve results in RGC degeneration and loss of visual function, as few RGCs survive, and even fewer can be provoked to regenerate their axons. Despite causative insults being broadly shared, regeneration studies demonstrate that RGC types exhibit differential resilience to injury and undergo selective survival and regeneration of their axons. While most early studies have identified these RGC types based their morphological and physiological characteristics, recent advances in transgenic and gene sequencing technologies have further enabled type identification based on unique molecular features. In this review, we provide an overview of the well characterized RGC types and identify those shown to preferentially survive and regenerate in various regeneration models. Furthermore, we discuss cellular characteristics of both the resilient and susceptible RGC types including the combinatorial expression of different molecular markers that identify these specific populations. Lastly, we discuss potential molecular mechanisms and genes found to be selectively expressed by specific types that may contribute to their reparative capacity. Together, we describe the studies that lay the important groundwork for identifying factors that promote neural regeneration and help advance the development of targeted therapy for the treatment of RGC degeneration as well as neurodegenerative diseases in general.

5.
Exp Neurol ; 355: 114147, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35738417

RESUMEN

Following injury in the central nervous system, a population of astrocytes occupy the lesion site, form glial bridges and facilitate axon regeneration. These astrocytes originate primarily from resident astrocytes or NG2+ oligodendrocyte progenitor cells. However, the extent to which these cell types give rise to the lesion-filling astrocytes, and whether the astrocytes derived from different cell types contribute similarly to optic nerve regeneration remain unclear. Here we examine the distribution of astrocytes and NG2+ cells in an optic nerve crush model. We show that optic nerve astrocytes partially fill the injury site over time after a crush injury. Viral mediated expression of a growth-promoting factor, ciliary neurotrophic factor (CNTF), in retinal ganglion cells (RGCs) promotes axon regeneration without altering the lesion size or the degree of lesion-filling GFAP+ cells. Strikingly, using inducible NG2CreER driver mice, we found that CNTF overexpression in RGCs increases the occupancy of NG2+ cell-derived astrocytes in the optic nerve lesion. An EdU pulse-chase experiment shows that the increase in NG2 cell-derived astrocytes is not due to an increase in cell proliferation. Lastly, we performed RNA-sequencing on the injured optic nerve and reveal that CNTF overexpression in RGCs results in significant changes in the expression of distinct genes, including those that encode chemokines, growth factor receptors, and immune cell modulators. Even though CNTF-induced axon regeneration has long been recognized, this is the first evidence of this procedure affecting glial cell fate at the optic nerve crush site. We discuss possible implication of these results for axon regeneration.


Asunto(s)
Traumatismos del Nervio Óptico , Traumatismos del Sistema Nervioso , Animales , Astrocitos/metabolismo , Axones/patología , Factor Neurotrófico Ciliar , Citocinas/metabolismo , Ratones , Regeneración Nerviosa/fisiología , Traumatismos del Nervio Óptico/patología , Células Ganglionares de la Retina/metabolismo , Traumatismos del Sistema Nervioso/metabolismo
6.
Cells ; 10(7)2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34359994

RESUMEN

Mitochondria are key players of aerobic respiration and the production of adenosine triphosphate and constitute the energetic core of eukaryotic cells. Furthermore, cells rely upon mitochondria homeostasis, the disruption of which is reported in pathological processes such as liver hepatotoxicity, cancer, muscular dystrophy, chronic inflammation, as well as in neurological conditions including Alzheimer's disease, schizophrenia, depression, ischemia and glaucoma. In addition to the well-known spontaneous cell-to-cell transfer of mitochondria, a therapeutic potential of the transplant of isolated, metabolically active mitochondria has been demonstrated in several in vitro and in vivo experimental models of disease. This review explores the striking outcomes achieved by mitotherapy thus far, and the most relevant underlying data regarding isolated mitochondria transplantation, including mechanisms of mitochondria intake, the balance between administration and therapy effectiveness, the relevance of mitochondrial source and purity and the mechanisms by which mitotherapy is gaining ground as a promising therapeutic approach.


Asunto(s)
Enfermedad de Alzheimer/terapia , Depresión/terapia , Glaucoma/terapia , Hepatitis/terapia , Isquemia/terapia , Mitocondrias/trasplante , Distrofias Musculares/terapia , Neoplasias/terapia , Esquizofrenia/terapia , Adenosina Trifosfato/biosíntesis , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Depresión/genética , Depresión/metabolismo , Depresión/patología , Modelos Animales de Enfermedad , Glaucoma/genética , Glaucoma/metabolismo , Glaucoma/patología , Hepatitis/genética , Hepatitis/metabolismo , Hepatitis/patología , Humanos , Isquemia/genética , Isquemia/metabolismo , Isquemia/patología , Hígado/metabolismo , Hígado/patología , Mitocondrias/genética , Mitocondrias/metabolismo , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Distrofias Musculares/patología , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Fosforilación Oxidativa , Esquizofrenia/genética , Esquizofrenia/metabolismo , Esquizofrenia/patología , Resultado del Tratamiento
7.
Stem Cell Res Ther ; 12(1): 69, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33468246

RESUMEN

BACKGROUND: Optic-nerve injury results in impaired transmission of visual signals to central targets and leads to the death of retinal ganglion cells (RGCs) and irreversible vision loss. Therapies with mesenchymal stem cells (MSCs) from different sources have been used experimentally to increase survival and regeneration of RGCs. METHODS: We investigated the efficacy of human umbilical Wharton's jelly-derived MSCs (hWJ-MSCs) and their extracellular vesicles (EVs) in a rat model of optic nerve crush. RESULTS: hWJ-MSCs had a sustained neuroprotective effect on RGCs for 14, 60, and 120 days after optic nerve crush. The same effect was obtained using serum-deprived hWJ-MSCs, whereas transplantation of EVs obtained from those cells was ineffective. Treatment with hWJ-MSCs also promoted axonal regeneration along the optic nerve and reinnervation of visual targets 120 days after crush. CONCLUSIONS: The observations showed that this treatment with human-derived MSCs promoted sustained neuroprotection and regeneration of RGCs after optic nerve injury. These findings highlight the possibility to use cell therapy to preserve neurons and to promote axon regeneration, using a reliable source of human MSCs.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Ganglionares de la Retina , Animales , Axones , Supervivencia Celular , Humanos , Regeneración Nerviosa , Nervio Óptico , Ratas
8.
Biochim Biophys Acta Mol Basis Dis ; 1866(5): 165686, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31953215

RESUMEN

Mitochondrial dysfunctions are linked to a series of neurodegenerative human conditions, including Parkinson's disease, schizophrenia, optic neuropathies, and glaucoma. Recently, a series of studies have pointed mitotherapy - exogenous mitochondria transplant - as a promising way to attenuate the progression of neurologic disorders; however, the neuroprotective and pro-regenerative potentials of isolated mitochondria in vivo have not yet been elucidated. In this present work, we tested the effects of transplants of active (as well-coupled organelles were named), liver-isolated mitochondria on the survival of retinal ganglion cells and axonal outgrowth after optic nerve crush. Our data show that intravitreally transplanted, full active mitochondria incorporate into the retina, improve its oxidative metabolism and electrophysiological activity at 1 day after transplantation. Moreover, mitotherapy increases cell survival in the ganglion cell layer at 14 days, and leads to a higher number of axons extending beyond the injury site at 28 days; effects that are dependent on the organelles' structural integrity. Together, our findings support mitotherapy as a promising approach for future therapeutic interventions upon central nervous system damage.


Asunto(s)
Mitocondrias/trasplante , Regeneración Nerviosa , Traumatismos del Nervio Óptico/terapia , Nervio Óptico/patología , Células Ganglionares de la Retina/patología , Animales , Fraccionamiento Celular , Supervivencia Celular/fisiología , Modelos Animales de Enfermedad , Femenino , Humanos , Inyecciones Intravítreas , Hígado/citología , Masculino , Traumatismos del Nervio Óptico/patología , Estrés Oxidativo/fisiología , Ratas
9.
Stem Cell Res Ther ; 10(1): 121, 2019 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-30995945

RESUMEN

BACKGROUND: Retina and/or optic nerve injury may cause irreversible blindness, due to degeneration of retinal ganglion cells. We and others have previously shown that the intravitreal injection of mesenchymal stem cells (MSCs) protects injured retinal ganglion cells and stimulates their regeneration after optic nerve injury, but the long-term effects of this therapy are still unknown. METHODS: We injected rat MSC (rMSC) intravitreally in adult (3-5 months) Lister Hooded rats of either sex after optic nerve crush. Retinal ganglion cell survival, axonal regeneration, and reconnection were analyzed 60 and 240 days after crush by immunohistochemistry for Tuj1, anterograde labeling with cholera-toxin B and by immunohistochemistry for nerve growth factor-induced gene A (NGFI-A, driven by light stimulation) in the superior colliculus after a cycle of light deprivation-stimulation. Visual behaviors (optokinetic reflex, looming response, and preference for dark) were analyzed 70 days after crush. RESULTS: rMSC treatment doubled the number of surviving retinal ganglion cells, preferentially of a larger subtype, and of axons regenerating up to 0.5 mm. Some axons regenerated to the lateral geniculate nucleus and superior colliculus. NGFI-A+ cells were doubled in rMSC-treated animals 60 days after crush, but equivalent to vehicle-injected animals 240 days after crush, suggesting that newly formed synapses degenerated. Animals did not recover visual behaviors. CONCLUSIONS: We conclude that rMSC-induced neuroprotection is sustained at longer time points. Although rMSCs promoted long-term neuroprotection and long-distance axon regeneration, the reconnection of retinal ganglion cells with their targets was transitory, indicating that they need additional stimuli to make stable reconnections.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/metabolismo , Regeneración Nerviosa , Traumatismos del Nervio Óptico , Nervio Óptico/fisiología , Aloinjertos , Animales , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Femenino , Masculino , Células Madre Mesenquimatosas/patología , Traumatismos del Nervio Óptico/metabolismo , Traumatismos del Nervio Óptico/patología , Traumatismos del Nervio Óptico/terapia , Ratas , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/patología
10.
Sci Rep ; 9(1): 16286, 2019 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-31705136

RESUMEN

Glaucoma is a neurodegenerative disorder characterized by the progressive functional impairment and degeneration of the retinal ganglion cells (RGCs) and their axons, and is the leading cause of irreversible blindness worldwide. Current management of glaucoma is based on reduction of high intraocular pressure (IOP), one of its most consistent risk factors, but the disease proceeds in almost half of the patients despite such treatments. Several experimental models of glaucoma have been developed in rodents, most of which present shortcomings such as high surgical invasiveness, slow learning curves, damage to the transparency of the optic media which prevents adequate functional assessment, and variable results. Here we describe a novel and simple method to induce ocular hypertension in pigmented rats, based on low-temperature cauterization of the whole circumference of the limbal vascular plexus, a major component of aqueous humor drainage and easily accessible for surgical procedures. This simple, low-cost and efficient method produced a reproducible subacute ocular hypertension with full clinical recovery, followed by a steady loss of retinal ganglion cells and optic axons, accompanied by functional changes detected both by electrophysiological and behavioral methods.


Asunto(s)
Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Glaucoma/etiología , Glaucoma/metabolismo , Animales , Biomarcadores , Muerte Celular , Electrorretinografía , Técnica del Anticuerpo Fluorescente , Glaucoma/diagnóstico , Inmunohistoquímica , Presión Intraocular , Degeneración Nerviosa , Desempeño Psicomotor , Ratas , Retina/metabolismo , Retina/patología , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/patología
11.
PLoS One ; 9(10): e110722, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25347773

RESUMEN

Bone marrow-derived cells have been used in different animal models of neurological diseases. We investigated the therapeutic potential of mesenchymal stem cells (MSC) injected into the vitreous body in a model of optic nerve injury. Adult (3-5 months old) Lister Hooded rats underwent unilateral optic nerve crush followed by injection of MSC or the vehicle into the vitreous body. Before they were injected, MSC were labeled with a fluorescent dye or with superparamagnetic iron oxide nanoparticles, which allowed us to track the cells in vivo by magnetic resonance imaging. Sixteen and 28 days after injury, the survival of retinal ganglion cells was evaluated by assessing the number of Tuj1- or Brn3a-positive cells in flat-mounted retinas, and optic nerve regeneration was investigated after anterograde labeling of the optic axons with cholera toxin B conjugated to Alexa 488. Transplanted MSC remained in the vitreous body and were found in the eye for several weeks. Cell therapy significantly increased the number of Tuj1- and Brn3a-positive cells in the retina and the number of axons distal to the crush site at 16 and 28 days after optic nerve crush, although the RGC number decreased over time. MSC therapy was associated with an increase in the FGF-2 expression in the retinal ganglion cells layer, suggesting a beneficial outcome mediated by trophic factors. Interleukin-1ß expression was also increased by MSC transplantation. In summary, MSC protected RGC and stimulated axon regeneration after optic nerve crush. The long period when the transplanted cells remained in the eye may account for the effect observed. However, further studies are needed to overcome eventually undesirable consequences of MSC transplantation and to potentiate the beneficial ones in order to sustain the neuroprotective effect overtime.


Asunto(s)
Axones/metabolismo , Células Madre Mesenquimatosas/metabolismo , Regeneración Nerviosa , Neuronas/metabolismo , Traumatismos del Nervio Óptico/metabolismo , Traumatismos del Nervio Óptico/terapia , Nervio Óptico , Adipocitos/citología , Animales , Antígenos de Superficie/metabolismo , Diferenciación Celular , Supervivencia Celular , Tratamiento Basado en Trasplante de Células y Tejidos , Condrocitos/citología , Modelos Animales de Enfermedad , Factor 2 de Crecimiento de Fibroblastos/genética , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Expresión Génica , Inmunofenotipificación , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Imagen por Resonancia Magnética , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Compresión Nerviosa , Traumatismos del Nervio Óptico/diagnóstico , Osteocitos/citología , Ratas , Células Ganglionares de la Retina/metabolismo
12.
Artículo en Inglés | ARCA | ID: arc-35575

RESUMEN

Bone marrow-derived cells have been used in different animal models of neurological diseases. We investigated the therapeutic potential of mesenchymal stem cells (MSC) injected into the vitreous body in a model of optic nerve injury. Adult (3­5 months old) Lister Hooded rats underwent unilateral optic nerve crush followed by injection of MSC or the vehicle into the vitreous body. Before they were injected, MSC were labeled with a fluorescent dye or with superparamagnetic iron oxide nanoparticles, which allowed us to track the cells in vivo by magnetic resonance imaging. Sixteen and 28 days after injury, the survival of retinal ganglion cells was evaluated by assessing the number of Tuj1- or Brn3a-positive cells in flat-mounted retinas, and optic nerve regeneration was investigated after anterograde labeling of the optic axons with cholera toxin B conjugated to Alexa 488. Transplanted MSC remained in the vitreous body and were found in the eye for several weeks. Cell therapy significantly increased the number of Tuj1- and Brn3a-positive cells in the retina and the number of axons distal to the crush site at 16 and 28 days after optic nerve crush, although the RGC number decreased over time. MSC therapy was associated with an increase in the FGF-2 expression in the retinal ganglion cells layer, suggesting a beneficial outcome mediated by trophic factors. Interleukin-1b expression was also increased by MSC transplantation. In summary, MSC protected RGC and stimulated axon regeneration after optic nerve crush. The long period when the transplanted cells remained in the eye may account for the effect observed. However, further studies are needed to overcome eventually undesirable consequences of MSC transplantation and to potentiate the beneficial ones in order to sustain the neuroprotective effect overtime.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA