Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
BMC Microbiol ; 24(1): 99, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528442

RESUMEN

BACKGROUND: Pseudomonas aeruginosa is an opportunistic pathogen in the health-care systems and one of the primary causative agents with high mortality in hospitalized patients, particularly immunocompromised. The limitation of effective antibiotic administration in multidrug-resistant and extensively drug-resistant P. aeruginosa isolates leads to the development of nosocomial infections and health problems. Quorum sensing system contributes to biofilm formation, expression of bacterial virulence factors, and development of drug resistance, causing prolonged patient infections. Therefore, due to the significance of the quorum sensing system in increasing the pathogenicity of P. aeruginosa, the primary objective of our study was to investigate the frequency of quorum sensing genes, as well as the biofilm formation and antibiotic resistance pattern among P. aeruginosa strains. METHODS: A total of 120 P. aeruginosa isolates were collected from different clinical specimens. The disk diffusion method was applied to detect the antibiotic resistance pattern of P. aeruginosa strains. Also, the microtiter plate method was carried out to evaluate the biofilm-forming ability of isolates. Finally, the frequency of rhlI, rhlR, lasI, and lasR genes was examined by the polymerase chain reaction method. RESULTS: In total, 88.3% P. aeruginosa isolates were found to be multidrug-resistant, of which 30.1% had extensively drug-resistant pattern. The highest and lowest resistance rates were found against ceftazidime (75.0%) and ciprofloxacin (46.6%), respectively. Also, 95.8% of isolates were able to produce biofilm, of which 42.5%, 33.3%, and 20.0% had strong, moderate, and weak biofilm patterns, respectively. The frequency of quorum sensing genes among all examined strains was as follows: rhlI (81.6%), rhlR (90.8%), lasI (89.1%), and lasR (78.3%). The most common type of quorum sensing genes among multidrug-resistant isolates were related to rhlR and lasI genes with 94.3%. Furthermore, rhlI, rhlR, and lasI genes were positive for all extensively drug-resistant isolates. However, the lasR gene had the lowest frequency among both multidrug-resistant (83.0%) and extensively drug-resistant (90.6%) isolates. Moreover, rhlR (94.7%) and lasR (81.7%) genes had the highest and lowest prevalence among biofilm-forming isolates, respectively. CONCLUSION: Our findings disclosed the significantly high prevalence of drug resistance among P. aeruginosa isolates. Also, the quorum sensing system had a significant correlation with biofilm formation and drug resistance, indicating the essential role of this system in the emergence of nosocomial infections caused by P. aeruginosa.


Asunto(s)
Infección Hospitalaria , Infecciones por Pseudomonas , Humanos , Percepción de Quorum/genética , Pseudomonas aeruginosa , Biopelículas , Infecciones por Pseudomonas/microbiología , Farmacorresistencia Microbiana , Proteínas Bacterianas/metabolismo
2.
Electrophoresis ; 45(7-8): 720-734, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38111364

RESUMEN

One field of study in microfluidics is the control, trapping, and separation of microparticles suspended in fluid. Some of its applications are related to cell handling, virus detection, and so on. One of the new methods in this field is using ICEK phenomena and dielectrophoresis forces. In the present study, considering the ICEK phenomena, the microparticles inside the fluid are deviated in the desired ratio using a novel ICEK microchip. The deviation is such that after the microparticles reach the floating electrode, they are trapped in the ICEK flow vortex and deviated through a secondary channel that was placed crosswise and noncoplanar above the main channel. For simulation verification, an experimental test is done. The method used for making two noncoplanar channels and separating the particles in the desired ratio with a simple ICEK microchip is an innovation of the present study. Moreover, the adjustment of the percentage of separation of microparticles by adjusting the parameters of the applied voltage and fluid inlet velocity is one of the other innovations of the present experimental study. We observed that for input velocities of 150-1200 µm/s with applied voltages of 10-33 V, 100% of the particles can be directed toward the secondary-channel.


Asunto(s)
Simulación por Computador , Técnicas Analíticas Microfluídicas , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos , Tamaño de la Partícula , Microesferas , Diseño de Equipo , Modelos Teóricos , Electroforesis/métodos , Electroforesis/instrumentación
3.
Caspian J Intern Med ; 15(2): 215-227, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38807723

RESUMEN

Background: The interaction between commensal bacteria and the host is essential for health and the gut microbiota-brain axis plays a vital role in this regard. Obesity as a medical problem not only affect the health of the individuals, but also the economic and social aspects of communities. The presence of any dysbiosis in the composition of the gut microbiota disrupts in the gut microbiota-brain axis, which in turn leads to an increase in appetite and then obesity. Because common treatments for obesity have several drawbacks, the use of microbiota-based therapy in addition to treatment and prevention of obesity can have other numerous benefits for the individual. In this review, we intend to investigate the relationship between obesity and the gut microbiota-brain axis as well as novel treatment strategies based on this axis with an emphasis on gut microbiota.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA