Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant J ; 109(1): 7-22, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34800071

RESUMEN

Drought is a major limitation for survival and growth in plants. With more frequent and severe drought episodes occurring due to climate change, it is imperative to understand the genomic and physiological basis of drought tolerance to be able to predict how species will respond in the future. In this study, univariate and multitrait multivariate genome-wide association study methods were used to identify candidate genes in two iconic and ecosystem-dominating species of the western USA, coast redwood and giant sequoia, using 10 drought-related physiological and anatomical traits and genome-wide sequence-capture single nucleotide polymorphisms. Population-level phenotypic variation was found in carbon isotope discrimination, osmotic pressure at full turgor, xylem hydraulic diameter, and total area of transporting fibers in both species. Our study identified new 78 new marker × trait associations in coast redwood and six in giant sequoia, with genes involved in a range of metabolic, stress, and signaling pathways, among other functions. This study contributes to a better understanding of the genomic basis of drought tolerance in long-generation conifers and helps guide current and future conservation efforts in the species.


Asunto(s)
Adaptación Fisiológica/genética , Genoma de Planta/genética , Sequoia/genética , Sequoiadendron/genética , Transducción de Señal/genética , Isótopos de Carbono/análisis , Conservación de los Recursos Naturales , Sequías , Estudio de Asociación del Genoma Completo , Herencia Multifactorial/genética , Presión Osmótica , Fenotipo , Estomas de Plantas/genética , Estomas de Plantas/fisiología , Sequoia/fisiología , Sequoiadendron/fisiología , Xilema/genética , Xilema/fisiología
2.
Plant J ; 104(2): 365-376, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32654344

RESUMEN

The genomic architecture and molecular mechanisms controlling variation in quantitative disease resistance loci are not well understood in plant species and have been barely studied in long-generation trees. Quantitative trait loci mapping and genome-wide association studies were combined to test a large single nucleotide polymorphism (SNP) set for association with quantitative and qualitative white pine blister rust resistance in sugar pine. In the absence of a chromosome-scale reference genome, a high-density consensus linkage map was generated to obtain locations for associated SNPs. Newly discovered associations for white pine blister rust quantitative disease resistance included 453 SNPs involved in wide biological functions, including genes associated with disease resistance and others involved in morphological and developmental processes. In addition, NBS-LRR pathogen recognition genes were found to be involved in quantitative disease resistance, suggesting these newly reported genes are qualitative genes with partial resistance, they are the result of defeated qualitative resistance due to avirulent races, or they have epistatic effects on qualitative disease resistance genes. This study is a step forward in our understanding of the complex genomic architecture of quantitative disease resistance in long-generation trees, and constitutes the first step towards marker-assisted disease resistance breeding in white pine species.


Asunto(s)
Basidiomycota/fisiología , Resistencia a la Enfermedad/genética , Pinus/genética , Pinus/microbiología , Mapeo Cromosómico , Genes de Plantas , Genética de Población , Genoma de Planta , Estudio de Asociación del Genoma Completo , Fenotipo , Enfermedades de las Plantas/microbiología , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
3.
Plant J ; 102(2): 410-423, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31823432

RESUMEN

Juglans (walnuts), the most speciose genus in the walnut family (Juglandaceae), represents most of the family's commercially valuable fruit and wood-producing trees. It includes several species used as rootstock for their resistance to various abiotic and biotic stressors. We present the full structural and functional genome annotations of six Juglans species and one outgroup within Juglandaceae (Juglans regia, J. cathayensis, J. hindsii, J. microcarpa, J. nigra, J. sigillata and Pterocarya stenoptera) produced using BRAKER2 semi-unsupervised gene prediction pipeline and additional tools. For each annotation, gene predictors were trained using 19 tissue-specific J. regia transcriptomes aligned to the genomes. Additional functional evidence and filters were applied to multi-exonic and mono-exonic putative genes to yield between 27 000 and 44 000 high-confidence gene models per species. Comparison of gene models to the BUSCO embryophyta dataset suggested that, on average, genome annotation completeness was 85.6%. We utilized these high-quality annotations to assess gene family evolution within Juglans, and among Juglans and selected Eurosid species. We found notable contractions in several gene families in J. hindsii, including disease resistance-related wall-associated kinase (WAK), Catharanthus roseus receptor-like kinase (CrRLK1L) and others involved in abiotic stress response. Finally, we confirmed an ancient whole-genome duplication that took place in a common ancestor of Juglandaceae using site substitution comparative analysis.


Asunto(s)
Genoma de Planta/genética , Genómica , Juglans/genética , Transcriptoma , Resistencia a la Enfermedad/genética , Juglans/fisiología , Estrés Fisiológico
4.
BMC Genomics ; 21(1): 203, 2020 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-32131731

RESUMEN

BACKGROUND: Unravelling the genetic architecture of agronomic traits in walnut such as budbreak date and bearing habit, is crucial for climate change adaptation and yield improvement. A Genome-Wide Association Study (GWAS) using multi-locus models was conducted in a panel of 170 walnut accessions genotyped using the Axiom™ J. regia 700 K SNP array, with phenological data from 2018, 2019 and legacy data. These accessions come from the INRAE walnut germplasm collection which is the result of important prospecting work performed in many countries around the world. In parallel, an F1 progeny of 78 individuals segregating for phenology-related traits, was genotyped with the same array and phenotyped for the same traits, to construct linkage maps and perform Quantitative Trait Loci (QTLs) detection. RESULTS: Using GWAS, we found strong associations of SNPs located at the beginning of chromosome 1 with both budbreak and female flowering dates. These findings were supported by QTLs detected in the same genomic region. Highly significant associated SNPs were also detected using GWAS for heterodichogamy and lateral bearing habit, both on chromosome 11. We developed a Kompetitive Allele Specific PCR (KASP) marker for budbreak date in walnut, and validated it using plant material from the Walnut Improvement Program of the University of California, Davis, demonstrating its effectiveness for marker-assisted selection in Persian walnut. We found several candidate genes involved in flowering events in walnut, including a gene related to heterodichogamy encoding a sugar catabolism enzyme and a cell division related gene linked to female flowering date. CONCLUSIONS: This study enhances knowledge of the genetic architecture of important agronomic traits related to male and female flowering processes and lateral bearing in walnut. The new marker available for budbreak date, one of the most important traits for good fruiting, will facilitate the selection and development of new walnut cultivars suitable for specific climates.


Asunto(s)
Mapeo Cromosómico/métodos , Estudio de Asociación del Genoma Completo/métodos , Juglans/fisiología , Sitios de Carácter Cuantitativo , Cromosomas de las Plantas/genética , Juglans/genética , Desequilibrio de Ligamiento , Fenotipo , Polimorfismo de Nucleótido Simple , Semillas/genética
5.
J Exp Bot ; 71(3): 1107-1127, 2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31639822

RESUMEN

Walnut production is challenged by climate change and abiotic stresses. Elucidating the genomic basis of adaptation to climate is essential to breeding drought-tolerant cultivars for enhanced productivity in arid and semi-arid regions. Here, we aimed to identify loci potentially involved in water use efficiency (WUE) and adaptation to drought in Persian walnut using a diverse panel of 95 walnut families (950 seedlings) from Iran, which show contrasting levels of water availability in their native habitats. We analyzed associations between phenotypic, genotypic, and environmental variables from data sets of 609 000 high-quality single nucleotide polymorphisms (SNPs), three categories of phenotypic traits [WUE-related traits under drought, their drought stress index, and principal components (PCs)], and 21 climate variables and their combination (first three PCs). Our genotype-phenotype analysis identified 22 significant and 266 suggestive associations, some of which were for multiple traits, suggesting their correlation and a possible common genetic control. Also, genotype-environment association analysis found 115 significant and 265 suggestive SNP loci that displayed potential signals of local adaptation. Several sets of stress-responsive genes were found in the genomic regions significantly associated with the aforementioned traits. Most of the candidate genes identified are involved in abscisic acid signaling, stomatal regulation, transduction of environmental signals, antioxidant defense system, osmotic adjustment, and leaf growth and development. Upon validation, the marker-trait associations identified for drought tolerance-related traits would allow the selection and development of new walnut rootstocks or scion cultivars with superior WUE.


Asunto(s)
Interacción Gen-Ambiente , Juglans/genética , Agua/metabolismo , Cambio Climático , Sequías , Estudio de Asociación del Genoma Completo , Juglans/metabolismo , Análisis de Componente Principal
6.
BMC Genomics ; 20(1): 875, 2019 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-31747881

RESUMEN

BACKGROUND: Populus trichocarpa is an important forest tree species for the generation of lignocellulosic ethanol. Understanding the genomic basis of biomass production and chemical composition of wood is fundamental in supporting genetic improvement programs. Considerable variation has been observed in this species for complex traits related to growth, phenology, ecophysiology and wood chemistry. Those traits are influenced by both polygenic control and environmental effects, and their genome architecture and regulation are only partially understood. Genome wide association studies (GWAS) represent an approach to advance that aim using thousands of single nucleotide polymorphisms (SNPs). Genotyping using exome capture methodologies represent an efficient approach to identify specific functional regions of genomes underlying phenotypic variation. RESULTS: We identified 813 K SNPs, which were utilized for genotyping 461 P. trichocarpa clones, representing 101 provenances collected from Oregon and Washington, and established in California. A GWAS performed on 20 traits, considering single SNP-marker tests identified a variable number of significant SNPs (p-value < 6.1479E-8) in association with diameter, height, leaf carbon and nitrogen contents, and δ15N. The number of significant SNPs ranged from 2 to 220 per trait. Additionally, multiple-marker analyses by sliding-windows tests detected between 6 and 192 significant windows for the analyzed traits. The significant SNPs resided within genes that encode proteins belonging to different functional classes as such protein synthesis, energy/metabolism and DNA/RNA metabolism, among others. CONCLUSIONS: SNP-markers within genes associated with traits of importance for biomass production were detected. They contribute to characterize the genomic architecture of P. trichocarpa biomass required to support the development and application of marker breeding technologies.


Asunto(s)
Genoma de Planta , Redes y Vías Metabólicas/genética , Populus/genética , Carácter Cuantitativo Heredable , Madera/genética , California , Carbono/metabolismo , Marcadores Genéticos , Estudio de Asociación del Genoma Completo , Lignina/biosíntesis , Metaboloma , Nitrógeno/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Polimorfismo de Nucleótido Simple , Populus/metabolismo , Secuenciación del Exoma , Madera/metabolismo
7.
BMC Genomics ; 20(1): 331, 2019 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-31046664

RESUMEN

BACKGROUND: Both a source of diversity and the development of genomic tools, such as reference genomes and molecular markers, are equally important to enable faster progress in plant breeding. Pear (Pyrus spp.) lags far behind other fruit and nut crops in terms of employment of available genetic resources for new cultivar development. To address this gap, we designed a high-density, high-efficiency and robust single nucleotide polymorphism (SNP) array for pear, with the main objectives of conducting genetic diversity and genome-wide association studies. RESULTS: By applying a two-step design process, which consisted of the construction of a first 'draft' array for the screening of a small subset of samples, we were able to identify the most robust and informative SNPs to include in the Applied Biosystems™ Axiom™ Pear 70 K Genotyping Array, currently the densest SNP array for pear. Preliminary evaluation of this 70 K array in 1416 diverse pear accessions from the USDA National Clonal Germplasm Repository (NCGR) in Corvallis, OR identified 66,616 SNPs (93% of all the tiled SNPs) as high quality and polymorphic (PolyHighResolution). We further used the Axiom Pear 70 K Genotyping Array to construct high-density linkage maps in a bi-parental population, and to make a direct comparison with available genotyping-by-sequencing (GBS) data, which suggested that the SNP array is a more robust method of screening for SNPs than restriction enzyme reduced representation sequence-based genotyping. CONCLUSIONS: The Axiom Pear 70 K Genotyping Array, with its high efficiency in a widely diverse panel of Pyrus species and cultivars, represents a valuable resource for a multitude of molecular studies in pear. The characterization of the USDA-NCGR collection with this array will provide important information for pear geneticists and breeders, as well as for the optimization of conservation strategies for Pyrus.


Asunto(s)
Mapeo Cromosómico/métodos , Ligamiento Genético , Marcadores Genéticos , Genoma de Planta , Polimorfismo de Nucleótido Simple , Pyrus/genética , Semillas/genética , Cromosomas de las Plantas , Estudio de Asociación del Genoma Completo , Técnicas de Genotipaje
8.
Plant Biotechnol J ; 17(6): 1027-1036, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30515952

RESUMEN

Over the last 20 years, global production of Persian walnut (Juglans regia L.) has grown enormously, likely reflecting increased consumption due to its numerous benefits to human health. However, advances in genome-wide association (GWA) studies and genomic selection (GS) for agronomically important traits in walnut remain limited due to the lack of powerful genomic tools. Here, we present the development and validation of a high-density 700K single nucleotide polymorphism (SNP) array in Persian walnut. Over 609K high-quality SNPs have been thoroughly selected from a set of 9.6 m genome-wide variants, previously identified from the high-depth re-sequencing of 27 founders of the Walnut Improvement Program (WIP) of University of California, Davis. To validate the effectiveness of the array, we genotyped a collection of 1284 walnut trees, including 1167 progeny of 48 WIP families and 26 walnut cultivars. More than half of the SNPs (55.7%) fell in the highest quality class of 'Poly High Resolution' (PHR) polymorphisms, which were used to assess the WIP pedigree integrity. We identified 151 new parent-offspring relationships, all confirmed with the Mendelian inheritance test. In addition, we explored the genetic variability among cultivars of different origin, revealing how the varieties from Europe and California were differentiated from Asian accessions. Both the reconstruction of the WIP pedigree and population structure analysis confirmed the effectiveness of the Applied Biosystems™ Axiom™ J. regia 700K SNP array, which initiates a novel genomic and advanced phase in walnut genetics and breeding.


Asunto(s)
Genómica , Técnicas de Genotipaje , Juglans , Estudio de Asociación del Genoma Completo , Genómica/métodos , Genotipo , Técnicas de Genotipaje/instrumentación , Humanos , Juglans/genética , Polimorfismo de Nucleótido Simple/genética
9.
New Phytol ; 221(4): 1789-1801, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30318590

RESUMEN

Dissecting the genetic and genomic architecture of complex traits is essential to understand the forces maintaining the variation in phenotypic traits of ecological and economical importance. Whole-genome resequencing data were used to generate high-resolution polymorphic single nucleotide polymorphism (SNP) markers and genotype individuals from common gardens across the loblolly pine (Pinus taeda) natural range. Genome-wide associations were tested with a large phenotypic dataset comprising 409 variables including morphological traits (height, diameter, carbon isotope discrimination, pitch canker resistance), and molecular traits such as metabolites and expression of xylem development genes. Our study identified 2335 new SNP × trait associations for the species, with many SNPs located in physical clusters in the genome of the species; and the genomic location of hotspots for metabolic × genotype associations. We found a highly polygenic basis of quantitative inheritance, with significant differences in number, effects size, genomic location and frequency of alleles contributing to variation in phenotypes in the different traits. While mutation-selection balance might be shaping the genetic variation in metabolic traits, balancing selection is more likely to shape the variation in expression of xylem development genes. Our work contributes to the study of complex traits in nonmodel plant species by identifying associations at a whole-genome level.


Asunto(s)
Herencia Multifactorial , Pinus taeda/genética , Polimorfismo de Nucleótido Simple , Frecuencia de los Genes , Genética de Población , Estudio de Asociación del Genoma Completo , Genotipo , Fenotipo , Pinus taeda/fisiología , Estados Unidos , Secuenciación Completa del Genoma , Xilema/genética , Xilema/crecimiento & desarrollo
11.
Mol Ecol ; 27(3): 647-658, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29274175

RESUMEN

Genetic responses to environmental changes take place at different spatial scales. While the effect of environment on the distribution of species' genetic diversity at large geographical scales has been the focus of several recent studies, its potential effects on genetic structure at local scales are understudied. Environmental effects on fine-scale spatial genetic structure (FSGS) were investigated in four Alpine conifer species (five to eight populations per species) from the eastern Italian Alps. Significant FSGS was found for 11 of 25 populations. Interestingly, we found no significant differences in FSGS across species but great variation among populations within species, highlighting the importance of local environmental factors. Interannual variability in spring temperature had a small but significant effect on FSGS of Larix decidua, probably related to species-specific life history traits. For Abies alba, Picea abies and Pinus cembra, linear models identified spring precipitation as a potentially relevant climate factor associated with differences in FSGS across populations; however, models had low explanatory power and were strongly influenced by a P. cembra outlier population from a very dry site. Overall, the direction of the identified effects is according to expectations, with drier and more variable environments increasing FSGS. Underlying mechanisms may include climate-related changes in the variance of reproductive success and/or environmental selection of specific families. This study provides new insights on potential changes in local genetic structure of four Alpine conifers in the face of environmental changes, suggesting that new climates, through altering FSGS, may also have relevant impacts on plant microevolution.


Asunto(s)
Ecosistema , Bosques , Árboles/genética , Clima , Variación Genética , Geografía , Endogamia , Italia , Modelos Lineales , Estaciones del Año , Especificidad de la Especie , Temperatura
12.
Plant J ; 87(5): 507-32, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27145194

RESUMEN

The Persian walnut (Juglans regia L.), a diploid species native to the mountainous regions of Central Asia, is the major walnut species cultivated for nut production and is one of the most widespread tree nut species in the world. The high nutritional value of J. regia nuts is associated with a rich array of polyphenolic compounds, whose complete biosynthetic pathways are still unknown. A J. regia genome sequence was obtained from the cultivar 'Chandler' to discover target genes and additional unknown genes. The 667-Mbp genome was assembled using two different methods (SOAPdenovo2 and MaSuRCA), with an N50 scaffold size of 464 955 bp (based on a genome size of 606 Mbp), 221 640 contigs and a GC content of 37%. Annotation with MAKER-P and other genomic resources yielded 32 498 gene models. Previous studies in walnut relying on tissue-specific methods have only identified a single polyphenol oxidase (PPO) gene (JrPPO1). Enabled by the J. regia genome sequence, a second homolog of PPO (JrPPO2) was discovered. In addition, about 130 genes in the large gallate 1-ß-glucosyltransferase (GGT) superfamily were detected. Specifically, two genes, JrGGT1 and JrGGT2, were significantly homologous to the GGT from Quercus robur (QrGGT), which is involved in the synthesis of 1-O-galloyl-ß-d-glucose, a precursor for the synthesis of hydrolysable tannins. The reference genome for J. regia provides meaningful insight into the complex pathways required for the synthesis of polyphenols. The walnut genome sequence provides important tools and methods to accelerate breeding and to facilitate the genetic dissection of complex traits.


Asunto(s)
Genoma de Planta/genética , Juglans/genética , Proteínas de Plantas/genética , Polifenoles/metabolismo , Catecol Oxidasa/metabolismo
13.
BMC Genomics ; 18(1): 558, 2017 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-28738815

RESUMEN

BACKGROUND: Perennial growth in plants is the product of interdependent cycles of daily and annual stimuli that induce cycles of growth and dormancy. In conifers, needles are the key perennial organ that integrates daily and seasonal signals from light, temperature, and water availability. To understand the relationship between seasonal cycles and seasonal gene expression responses in conifers, we examined diurnal and circannual needle mRNA accumulation in Douglas-fir (Pseudotsuga menziesii) needles at diurnal and circannual scales. Using mRNA sequencing, we sampled 6.1 × 109 reads from 19 trees and constructed a de novo pan-transcriptome reference that includes 173,882 tree-derived transcripts. Using this reference, we mapped RNA-Seq reads from 179 samples that capture daily and annual variation. RESULTS: We identified 12,042 diurnally-cyclic transcripts, 9299 of which showed homology to annotated genes from other plant genomes, including angiosperm core clock genes. Annual analysis revealed 21,225 circannual transcripts, 17,335 of which showed homology to annotated genes from other plant genomes. The timing of maximum gene expression is associated with light intensity at diurnal scales and photoperiod at annual scales, with approximately half of transcripts reaching maximum expression +/- 2 h from sunrise and sunset, and +/- 20 days from winter and summer solstices. Comparisons with published studies from other conifers shows congruent behavior in clock genes with Japanese cedar (Cryptomeria), and a significant preservation of gene expression patterns for 2278 putative orthologs from Douglas-fir during the summer growing season, and 760 putative orthologs from spruce (Picea) during the transition from fall to winter. CONCLUSIONS: Our study highlight the extensive diurnal and circannual transcriptome variability demonstrated in conifer needles. At these temporal scales, 29% of expressed transcripts show a significant diurnal cycle, and 58.7% show a significant circannual cycle. Remarkably, thousands of genes reach their annual peak activity during winter dormancy. Our study establishes the fine-scale timing of daily and annual maximum gene expression for diverse needle genes in Douglas-fir, and it highlights the potential for using this information for evaluating hypotheses concerning the daily or seasonal timing of gene activity in temperate-zone conifers, and for identifying cyclic transcriptome components in other conifer species.


Asunto(s)
Ritmo Circadiano/genética , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Pseudotsuga/genética , Pseudotsuga/fisiología , Transcripción Genética , Oscuridad , Perfilación de la Expresión Génica , Fotoperiodo , Hojas de la Planta/efectos de la radiación , Pseudotsuga/efectos de la radiación , Transcripción Genética/efectos de la radiación
14.
BMC Genomics ; 18(1): 547, 2017 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-28728575

RESUMEN

BACKGROUND: The American Beech tree (Fagus grandifolia Ehrh.), native to eastern North America, is ecologically important and provides high quality wood products. This species is susceptible to beech bark disease (BBD) and is facing high rates of mortality in North America. The disease occurs from an interaction between the woolly beech scale insect (Cryptococcus fagisuga), one of two species of the fungus Neonectria (N. faginata or N. ditissima), and American Beech trees. METHODS: In this case-control genome-wide association study (GWAS), we tested 16 K high quality SNPs using the Affymetrix Axiom 1.5 K - 50 K assay to genotype an association population of 514 individuals. We also conducted linkage analysis in a full-sib family of 115 individuals. Fisher's exact test and logistic regression tests were performed to test associations between SNPs and phenotypes. RESULTS: Association tests revealed four highly significant SNPs on chromosome (Chr) 5 for a single gene (Mt), which encodes a mRNA for metallothionein-like protein (metal ion binding) in Fagus sylvatica. Metallothioneins represent Cys-rich metal chelators able to coordinate metal atoms and may play an important role in the resistance mechanisms against beech scale insect. CONCLUSION: The GWAS study has identified a single locus of major effect contributing to beech bark disease resistance. Knowledge of this genetic locus contributing to resistance might be used in applied breeding, conservation and restoration programs.


Asunto(s)
Resistencia a la Enfermedad/genética , Fagus/genética , Fagus/inmunología , Estudio de Asociación del Genoma Completo , Enfermedades de las Plantas/inmunología , Fagus/microbiología , Perfilación de la Expresión Génica , Desequilibrio de Ligamiento , Polimorfismo de Nucleótido Simple
15.
Mol Ecol ; 26(24): 6857-6870, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29110402

RESUMEN

Comparing related organisms with differing ecological requirements and evolutionary histories can shed light on the mechanisms and drivers underlying genetic adaptation. Here, by examining a common set of hundreds of loci, we compare patterns of nucleotide diversity and molecular adaptation of two European conifers (Scots pine and maritime pine) living in contrasted environments and characterized by distinct population genetic structure (low and clinal in Scots pine, high and ecotypic in maritime pine) and demographic histories. We found higher nucleotide diversity in Scots pine than in maritime pine, whereas rates of new adaptive substitutions (ωa ), as estimated from the distribution of fitness effects, were similar across species and among the highest found in plants. Sample size and population genetic structure did not appear to have resulted in significant bias in estimates of ωa . Moreover, population contraction-expansion dynamics for each species did not affect differentially the rate of adaptive substitution in these two pines. Several methodological and biological factors may underlie the unusually high rate of adaptive evolution of Scots pine and maritime pine. By providing two new case studies with contrasting evolutionary histories, we contribute to disentangling the multiple factors potentially affecting adaptive evolution in natural plant populations.


Asunto(s)
Adaptación Fisiológica/genética , Evolución Molecular , Genética de Población , Pinus/genética , Europa (Continente) , Aptitud Genética , Sitios Genéticos , Variación Genética , Pinus/clasificación , Dinámica Poblacional
16.
Mol Ecol ; 26(12): 3168-3185, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28316116

RESUMEN

Patterns of local adaptation at fine spatial scales are central to understanding how evolution proceeds, and are essential to the effective management of economically and ecologically important forest tree species. Here, we employ single and multilocus analyses of genetic data (n = 116 231 SNPs) to describe signatures of fine-scale adaptation within eight whitebark pine (Pinus albicaulis Engelm.) populations across the local extent of the environmentally heterogeneous Lake Tahoe Basin, USA. We show that despite highly shared genetic variation (FST  = 0.0069), there is strong evidence for adaptation to the rain shadow experienced across the eastern Sierra Nevada. Specifically, we build upon evidence from a common garden study and find that allele frequencies of loci associated with four phenotypes (mean = 236 SNPs), 18 environmental variables (mean = 99 SNPs), and those detected through genetic differentiation (n = 110 SNPs) exhibit significantly higher signals of selection (covariance of allele frequencies) than could be expected to arise, given the data. We also provide evidence that this covariance tracks environmental measures related to soil water availability through subtle allele frequency shifts across populations. Our results replicate empirical support for theoretical expectations of local adaptation for populations exhibiting strong gene flow and high selective pressures and suggest that ongoing adaptation of many P. albicaulis populations within the Lake Tahoe Basin will not be constrained by the lack of genetic variation. Even so, some populations exhibit low levels of heritability for the traits presumed to be related to fitness. These instances could be used to prioritize management to maintain adaptive potential. Overall, we suggest that established practices regarding whitebark pine conservation be maintained, with the additional context of fine-scale adaptation.


Asunto(s)
Adaptación Fisiológica/genética , Pinus/genética , Pinus/fisiología , Agua , Ambiente , Frecuencia de los Genes , Lagos , Nevada , Polimorfismo de Nucleótido Simple , Análisis Espacial , Árboles
17.
Nat Rev Genet ; 12(2): 111-22, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21245829

RESUMEN

Over the past two decades, research in forest tree genomics has lagged behind that of model and agricultural systems. However, genomic research in forest trees is poised to enter into an important and productive phase owing to the advent of next-generation sequencing technologies, the enormous genetic diversity in forest trees and the need to mitigate the effects of climate change. Research on long-lived woody perennials is extending our molecular knowledge of complex life histories and adaptations to the environment - enriching a field that has traditionally drawn biological inference from a few short-lived herbaceous species.


Asunto(s)
Árboles/genética , Animales , Regulación de la Expresión Génica de las Plantas , Sitios Genéticos , Genoma de Planta , Genómica , Humanos , Árboles/fisiología
18.
BMC Genet ; 17(1): 138, 2016 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-27756221

RESUMEN

BACKGROUND: The use of wood as an industrial raw material has led to development of plantation forestry, in which trees are planted, managed, and harvested as crops. The productivity of such plantations often exceeds that of less-intensively-managed forests, and land managers have the option of choosing specific planting stock to produce specific types of wood for industrial use. Stem forking, or division of the stem into two or more stems of roughly equal size, is a character trait important in determining the quality of the stem for production of solid wood products. This trait typically has very low individual-tree heritability, but can be more accurately assessed in clonally-replicated plantings where each genotype is represented by several individual trees. We report results from a quantitative trait mapping experiment in a clonally-replicated full-sibling family of loblolly pine (Pinus taeda L.). RESULTS: Quantitative trait loci influencing forking defects were identified in an outbred full-sibling family of loblolly pine, using single-nucleotide polymorphism markers. Genetic markers in this family segregated either in 1:2:1 (F2 intercross-like segregation) or 1:1 ratio (backcross-like segregation). An integrated linkage map combining markers with different segregation ratios was assembled for this full-sib family, and a total of 409 SNP markers were mapped on 12 linkage groups, covering 1622 cM. Two and three trait loci were identified for forking and ramicorn branch traits, respectively, using the interval mapping method. Three trait loci were detected for both traits using multiple-trait analysis. CONCLUSIONS: The detection of three loci for forking and ramicorn branching in a multiple-trait analysis could mean that there are genes with pleiotropic effects on both traits, or that separate genes affecting different traits are clustered together. The detection of genetic loci associated with variation in stem quality traits in this study supports the hypothesis that marker-assisted selection can be used to decrease the rate of stem defects in breeding populations of loblolly pine.


Asunto(s)
Linaje , Pinus taeda/genética , Sitios de Carácter Cuantitativo , Carácter Cuantitativo Heredable , Algoritmos , Cruzamiento , Mapeo Cromosómico , Estudios de Asociación Genética , Ligamiento Genético , Marcadores Genéticos , Genotipo , Modelos Estadísticos , Fenotipo , Polimorfismo de Nucleótido Simple
19.
New Phytol ; 205(2): 627-41, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25266813

RESUMEN

Genetically improving constitutive resin canal development in Pinus stems may enhance the capacity to synthesize terpenes for bark beetle resistance, chemical feedstocks, and biofuels. To discover genes that potentially regulate axial resin canal number (RCN), single nucleotide polymorphisms (SNPs) in 4027 genes were tested for association with RCN in two growth rings and three environments in a complex pedigree of 520 Pinus taeda individuals (CCLONES). The map locations of associated genes were compared with RCN quantitative trait loci (QTLs) in a (P. taeda × Pinus elliottii) × P. elliottii pseudo-backcross of 345 full-sibs (BC1). Resin canal number was heritable (h(2) ˜ 0.12-0.21) and positively genetically correlated with xylem growth (rg ˜ 0.32-0.72) and oleoresin flow (rg ˜ 0.15-0.51). Sixteen well-supported candidate regulators of RCN were discovered in CCLONES, including genes associated across sites and ages, unidirectionally associated with oleoresin flow and xylem growth, and mapped to RCN QTLs in BC1. Breeding is predicted to increase RCN 11% in one generation and could be accelerated with genomic selection at accuracies of 0.45-0.52 across environments. There is significant genetic variation for RCN in loblolly pine, which can be exploited in breeding for elevated terpene content.


Asunto(s)
Genes de Plantas , Pinus taeda/genética , Resinas de Plantas/química , Animales , Biocombustibles , Escarabajos/fisiología , Variación Genética , Pinus taeda/química , Pinus taeda/metabolismo , Tallos de la Planta/química , Tallos de la Planta/genética , Tallos de la Planta/metabolismo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Xilema/química , Xilema/metabolismo
20.
BMC Evol Biol ; 14: 67, 2014 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-24678701

RESUMEN

BACKGROUND: As it becomes increasingly possible to obtain DNA sequences of orthologous genes from diverse sets of taxa, species trees are frequently being inferred from multilocus data. However, the behavior of many methods for performing this inference has remained largely unexplored. Some methods have been proven to be consistent given certain evolutionary models, whereas others rely on criteria that, although appropriate for many parameter values, have peculiar zones of the parameter space in which they fail to converge on the correct estimate as data sets increase in size. RESULTS: Here, using North American pines, we empirically evaluate the behavior of 24 strategies for species tree inference using three alternative outgroups (72 strategies total). The data consist of 120 individuals sampled in eight ingroup species from subsection Strobus and three outgroup species from subsection Gerardianae, spanning ∼47 kilobases of sequence at 121 loci. Each "strategy" for inferring species trees consists of three features: a species tree construction method, a gene tree inference method, and a choice of outgroup. We use multivariate analysis techniques such as principal components analysis and hierarchical clustering to identify tree characteristics that are robustly observed across strategies, as well as to identify groups of strategies that produce trees with similar features. We find that strategies that construct species trees using only topological information cluster together and that strategies that use additional non-topological information (e.g., branch lengths) also cluster together. Strategies that utilize more than one individual within a species to infer gene trees tend to produce estimates of species trees that contain clades present in trees estimated by other strategies. Strategies that use the minimize-deep-coalescences criterion to construct species trees tend to produce species tree estimates that contain clades that are not present in trees estimated by the Concatenation, RTC, SMRT, STAR, and STEAC methods, and that in general are more balanced than those inferred by these other strategies. CONCLUSIONS: When constructing a species tree from a multilocus set of sequences, our observations provide a basis for interpreting differences in species tree estimates obtained via different approaches that have a two-stage structure in common, one step for gene tree estimation and a second step for species tree estimation. The methods explored here employ a number of distinct features of the data, and our analysis suggests that recovery of the same results from multiple methods that tend to differ in their patterns of inference can be a valuable tool for obtaining reliable estimates.


Asunto(s)
Filogenia , Pinus/clasificación , Pinus/genética , Análisis por Conglomerados , ADN de Plantas/genética , Tipificación de Secuencias Multilocus , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA