Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 334
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Physiol Rev ; 102(2): 1025-1151, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33949874

RESUMEN

The brain harbors a unique ability to, figuratively speaking, shift its gears. During wakefulness, the brain is geared fully toward processing information and behaving, while homeostatic functions predominate during sleep. The blood-brain barrier establishes a stable environment that is optimal for neuronal function, yet the barrier imposes a physiological problem; transcapillary filtration that forms extracellular fluid in other organs is reduced to a minimum in brain. Consequently, the brain depends on a special fluid [the cerebrospinal fluid (CSF)] that is flushed into brain along the unique perivascular spaces created by astrocytic vascular endfeet. We describe this pathway, coined the term glymphatic system, based on its dependency on astrocytic vascular endfeet and their adluminal expression of aquaporin-4 water channels facing toward CSF-filled perivascular spaces. Glymphatic clearance of potentially harmful metabolic or protein waste products, such as amyloid-ß, is primarily active during sleep, when its physiological drivers, the cardiac cycle, respiration, and slow vasomotion, together efficiently propel CSF inflow along periarterial spaces. The brain's extracellular space contains an abundance of proteoglycans and hyaluronan, which provide a low-resistance hydraulic conduit that rapidly can expand and shrink during the sleep-wake cycle. We describe this unique fluid system of the brain, which meets the brain's requisites to maintain homeostasis similar to peripheral organs, considering the blood-brain-barrier and the paths for formation and egress of the CSF.


Asunto(s)
Sistema Glinfático , Péptidos beta-Amiloides/metabolismo , Transporte Biológico , Barrera Hematoencefálica , Encéfalo/metabolismo , Líquido Cefalorraquídeo/metabolismo , Sistema Glinfático/metabolismo , Humanos
2.
Nature ; 623(7989): 992-1000, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37968397

RESUMEN

Cerebral oedema is associated with morbidity and mortality after traumatic brain injury (TBI)1. Noradrenaline levels are increased after TBI2-4, and the amplitude of the increase in noradrenaline predicts both the extent of injury5 and the likelihood of mortality6. Glymphatic impairment is both a feature of and a contributor to brain injury7,8, but its relationship with the injury-associated surge in noradrenaline is unclear. Here we report that acute post-traumatic oedema results from a suppression of glymphatic and lymphatic fluid flow that occurs in response to excessive systemic release of noradrenaline. This post-TBI adrenergic storm was associated with reduced contractility of cervical lymphatic vessels, consistent with diminished return of glymphatic and lymphatic fluid to the systemic circulation. Accordingly, pan-adrenergic receptor inhibition normalized central venous pressure and partly restored glymphatic and cervical lymphatic flow in a mouse model of TBI, and these actions led to substantially reduced brain oedema and improved functional outcomes. Furthermore, post-traumatic inhibition of adrenergic signalling boosted lymphatic export of cellular debris from the traumatic lesion, substantially reducing secondary inflammation and accumulation of phosphorylated tau. These observations suggest that targeting the noradrenergic control of central glymphatic flow may offer a therapeutic approach for treating acute TBI.


Asunto(s)
Edema Encefálico , Lesiones Traumáticas del Encéfalo , Sistema Glinfático , Norepinefrina , Animales , Ratones , Antagonistas Adrenérgicos/farmacología , Antagonistas Adrenérgicos/uso terapéutico , Edema Encefálico/complicaciones , Edema Encefálico/tratamiento farmacológico , Edema Encefálico/metabolismo , Edema Encefálico/prevención & control , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/metabolismo , Modelos Animales de Enfermedad , Sistema Glinfático/efectos de los fármacos , Sistema Glinfático/metabolismo , Inflamación/complicaciones , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/prevención & control , Vasos Linfáticos/metabolismo , Norepinefrina/metabolismo , Fosforilación , Receptores Adrenérgicos/metabolismo
3.
Proc Natl Acad Sci U S A ; 121(16): e2318444121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38598340

RESUMEN

Fluid efflux from the brain plays an important role in solute waste clearance. Current experimental approaches provide little spatial information, and data collection is limited due to short duration or low frequency of sampling. One approach shows tracer efflux to be independent of molecular size, indicating bulk flow, yet also decelerating like simple membrane diffusion. In an apparent contradiction to this report, other studies point to tracer efflux acceleration. We here develop a one-dimensional advection-diffusion model to gain insight into brain efflux principles. The model is characterized by nine physiological constants and three efflux parameters for which we quantify prior uncertainty. Using Bayes' rule and the two efflux studies, we validate the model and calculate data-informed parameter distributions. The apparent contradictions in the efflux studies are resolved by brain surface boundaries being bottlenecks for efflux. To critically test the model, a custom MRI efflux assay measuring solute dispersion in tissue and release to cerebrospinal fluid was employed. The model passed the test with tissue bulk flow velocities in the range 60 to 190 [Formula: see text]m/h. Dimensional analysis identified three principal determinants of efflux, highlighting brain surfaces as a restricting factor for metabolite solute clearance.


Asunto(s)
Encéfalo , Teorema de Bayes , Encéfalo/metabolismo , Transporte Biológico , Difusión , Cinética
4.
Proc Natl Acad Sci U S A ; 120(40): e2305071120, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37774097

RESUMEN

Extracellular potassium concentration ([K+]e) is known to increase as a function of arousal. [K+]e is also a potent modulator of transmitter release. Yet, it is not known whether [K+]e is involved in the neuromodulator release associated with behavioral transitions. We here show that manipulating [K+]e controls the local release of monoaminergic neuromodulators, including norepinephrine (NE), serotonin, and dopamine. Imposing a [K+]e increase is adequate to boost local NE levels, and conversely, lowering [K+]e can attenuate local NE. Electroencephalography analysis and behavioral assays revealed that manipulation of cortical [K+]e was sufficient to alter the sleep-wake cycle and behavior of mice. These observations point to the concept that NE levels in the cortex are not solely determined by subcortical release, but that local [K+]e dynamics have a strong impact on cortical NE. Thus, cortical [K+]e is an underappreciated regulator of behavioral transitions.


Asunto(s)
Nivel de Alerta , Norepinefrina , Ratones , Animales , Electroencefalografía , Serotonina , Dopamina
5.
Proc Natl Acad Sci U S A ; 120(14): e2217744120, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36989300

RESUMEN

Quantifying the flow of cerebrospinal fluid (CSF) is crucial for understanding brain waste clearance and nutrient delivery, as well as edema in pathological conditions such as stroke. However, existing in vivo techniques are limited to sparse velocity measurements in pial perivascular spaces (PVSs) or low-resolution measurements from brain-wide imaging. Additionally, volume flow rate, pressure, and shear stress variation in PVSs are essentially impossible to measure in vivo. Here, we show that artificial intelligence velocimetry (AIV) can integrate sparse velocity measurements with physics-informed neural networks to quantify CSF flow in PVSs. With AIV, we infer three-dimensional (3D), high-resolution velocity, pressure, and shear stress. Validation comes from training with 70% of PTV measurements and demonstrating close agreement with the remaining 30%. A sensitivity analysis on the AIV inputs shows that the uncertainty in AIV inferred quantities due to uncertainties in the PVS boundary locations inherent to in vivo imaging is less than 30%, and the uncertainty from the neural net initialization is less than 1%. In PVSs of N = 4 wild-type mice we find mean flow speed 16.33 ± 11.09 µm/s, volume flow rate 2.22 ± 1.983 × 103 µm3/s, axial pressure gradient ( - 2.75 ± 2.01)×10-4 Pa/µm (-2.07 ± 1.51 mmHg/m), and wall shear stress (3.00 ± 1.45)×10-3 Pa (all mean ± SE). Pressure gradients, flow rates, and resistances agree with prior predictions. AIV infers in vivo PVS flows in remarkable detail, which will improve fluid dynamic models and potentially clarify how CSF flow changes with aging, Alzheimer's disease, and small vessel disease.


Asunto(s)
Inteligencia Artificial , Redes Neurales de la Computación , Animales , Ratones , Reología/métodos , Encéfalo , Física , Velocidad del Flujo Sanguíneo
6.
Physiol Rev ; 98(1): 239-389, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29351512

RESUMEN

Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.


Asunto(s)
Astrocitos/fisiología , Animales , Astrocitos/citología , Evolución Biológica , Actividad Nerviosa Superior/fisiología , Homeostasis , Humanos , Canales Iónicos/metabolismo , Potenciales de la Membrana , Receptores de Superficie Celular/metabolismo
7.
PLoS Biol ; 20(9): e3001772, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36067248

RESUMEN

Potassium ion (K+) plays a critical role as an essential electrolyte in all biological systems. Genetically-encoded fluorescent K+ biosensors are promising tools to further improve our understanding of K+-dependent processes under normal and pathological conditions. Here, we report the crystal structure of a previously reported genetically-encoded fluorescent K+ biosensor, GINKO1, in the K+-bound state. Using structure-guided optimization and directed evolution, we have engineered an improved K+ biosensor, designated GINKO2, with higher sensitivity and specificity. We have demonstrated the utility of GINKO2 for in vivo detection and imaging of K+ dynamics in multiple model organisms, including bacteria, plants, and mice.


Asunto(s)
Técnicas Biosensibles , Transferencia Resonante de Energía de Fluorescencia , Animales , Técnicas Biosensibles/métodos , Transferencia Resonante de Energía de Fluorescencia/métodos , Iones , Ratones , Potasio
8.
Brain ; 147(5): 1726-1739, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38462589

RESUMEN

Progressive neuronal loss is a hallmark feature distinguishing neurodegenerative diseases from normal ageing. However, the underlying mechanisms remain unknown. Extracellular K+ homeostasis is a potential mediator of neuronal injury as K+ elevations increase excitatory activity. The dysregulation of extracellular K+ and potassium channel expressions during neurodegeneration could contribute to this distinction. Here we measured the cortical extracellular K+ concentration ([K+]e) in awake wild-type mice as well as murine models of neurodegeneration using K+-sensitive microelectrodes. Unexpectedly, aged wild-type mice exhibited significantly lower cortical [K+]e than young mice. In contrast, cortical [K+]e was consistently elevated in Alzheimer's disease (APP/PS1), amyotrophic lateral sclerosis (ALS) (SOD1G93A) and Huntington's disease (R6/2) models. Cortical resting [K+]e correlated inversely with neuronal density and the [K+]e buffering rate but correlated positively with the predicted neuronal firing rate. Screening of astrocyte-selective genomic datasets revealed a number of potassium channel genes that were downregulated in these disease models but not in normal ageing. In particular, the inwardly rectifying potassium channel Kcnj10 was downregulated in ALS and Huntington's disease models but not in normal ageing, while Fxyd1 and Slc1a3, each of which acts as a negative regulator of potassium uptake, were each upregulated by astrocytes in both Alzheimer's disease and ALS models. Chronic elevation of [K+]e in response to changes in gene expression and the attendant neuronal hyperexcitability may drive the neuronal loss characteristic of these neurodegenerative diseases. These observations suggest that the dysregulation of extracellular K+ homeostasis in a number of neurodegenerative diseases could be due to aberrant astrocytic K+ buffering and as such, highlight a fundamental role for glial dysfunction in neurodegeneration.


Asunto(s)
Envejecimiento , Enfermedades Neurodegenerativas , Potasio , Animales , Potasio/metabolismo , Envejecimiento/metabolismo , Ratones , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Ratones Transgénicos , Canales de Potasio de Rectificación Interna/metabolismo , Canales de Potasio de Rectificación Interna/genética , Masculino , Ratones Endogámicos C57BL , Neuronas/metabolismo , Humanos , Modelos Animales de Enfermedad , Corteza Cerebral/metabolismo , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/genética , Femenino , Astrocitos/metabolismo
9.
Nature ; 627(8002): 44-45, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38418726
10.
Glia ; 72(5): 982-998, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38363040

RESUMEN

The glymphatic system transports cerebrospinal fluid (CSF) into the brain via arterial perivascular spaces and removes interstitial fluid from the brain along perivenous spaces and white matter tracts. This directional fluid flow supports the clearance of metabolic wastes produced by the brain. Glymphatic fluid transport is facilitated by aquaporin-4 (AQP4) water channels, which are enriched in the astrocytic vascular endfeet comprising the outer boundary of the perivascular space. Yet, prior studies of AQP4 function have relied on genetic models, or correlated altered AQP4 expression with glymphatic flow in disease states. Herein, we sought to pharmacologically manipulate AQP4 function with the inhibitor AER-271 to assess the contribution of AQP4 to glymphatic fluid transport in mouse brain. Administration of AER-271 inhibited glymphatic influx as measured by CSF tracer infused into the cisterna magna and inhibited increases in the interstitial fluid volume as measured by diffusion-weighted MRI. Furthermore, AER-271 inhibited glymphatic efflux as assessed by an in vivo clearance assay. Importantly, AER-271 did not affect AQP4 localization to the astrocytic endfeet, nor have any effect in AQP4 deficient mice. Since acute pharmacological inhibition of AQP4 directly decreased glymphatic flow in wild-type but not in AQP4 deficient mice, we foresee AER-271 as a new tool for manipulation of the glymphatic system in rodent brain.


Asunto(s)
Clorofenoles , Sistema Glinfático , Ratones , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Sistema Glinfático/metabolismo , Clorofenoles/metabolismo , Acuaporina 4/genética , Acuaporina 4/metabolismo
11.
Neuroimage ; 295: 120662, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38823503

RESUMEN

Understanding the physiological processes in aging and how neurodegenerative disorders affect cognitive function is a high priority for advancing human health. One specific area of recently enabled research is the in vivo biomechanical state of the brain. This study utilized reverberant optical coherence elastography, a high-resolution elasticity imaging method, to investigate stiffness changes during the sleep/wake cycle, aging, and Alzheimer's disease in murine models. Four-dimensional scans of 44 wildtype mice, 13 mice with deletion of aquaporin-4 water channel, and 12 mice with Alzheimer-related pathology (APP/PS1) demonstrated that (1) cortical tissue became softer (on the order of a 10% decrease in shear wave speed) when young wildtype mice transitioned from wake to anesthetized, yet this effect was lost in aging and with mice overexpressing amyloid-ß or lacking the water channel AQP4. (2) Cortical stiffness increased with age in all mice lines, but wildtype mice exhibited the most prominent changes as a function of aging. The study provides novel insight into the brain's biomechanics, the constraints of fluid flow, and how the state of brain activity affects basic properties of cortical tissues.


Asunto(s)
Envejecimiento , Enfermedad de Alzheimer , Encéfalo , Diagnóstico por Imagen de Elasticidad , Sueño , Animales , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/fisiopatología , Envejecimiento/fisiología , Diagnóstico por Imagen de Elasticidad/métodos , Ratones , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Sueño/fisiología , Vigilia/fisiología , Ratones Transgénicos , Acuaporina 4/metabolismo , Acuaporina 4/genética , Masculino , Ratones Endogámicos C57BL
12.
Curr Opin Neurol ; 37(2): 182-188, 2024 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-38345416

RESUMEN

PURPOSE OF REVIEW: Purpose of this review is to update the ongoing work in the field of glymphatic and neurodegenerative research and to highlight focus areas that are particularly promising. RECENT FINDINGS: Multiple reports have over the past decade documented that glymphatic fluid transport is broadly suppressed in neurodegenerative diseases. Most studies have focused on Alzheimer's disease using a variety of preclinical disease models, whereas the clinical work is based on various neuroimaging approaches. It has consistently been reported that brain fluid transport is impaired in patients suffering from Alzheimer's disease compared with age-matched control subjects. SUMMARY: An open question in the field is to define the mechanistic underpinning of why glymphatic function is suppressed. Other questions include the opportunities for using glymphatic imaging for diagnostic purposes and in treatment intended to prevent or slow Alzheimer disease progression.


Asunto(s)
Enfermedad de Alzheimer , Sistema Glinfático , Enfermedades Neurodegenerativas , Humanos , Sistema Glinfático/diagnóstico por imagen , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedades Neurodegenerativas/diagnóstico por imagen , Encéfalo/diagnóstico por imagen
13.
NMR Biomed ; : e5159, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38634301

RESUMEN

Over the last decade, it has become evident that cerebrospinal fluid (CSF) plays a pivotal role in brain solute clearance through perivascular pathways and interactions between the brain and meningeal lymphatic vessels. Whereas most of this fundamental knowledge was gained from rodent models, human brain clearance imaging has provided important insights into the human system and highlighted the existence of important interspecies differences. Current gold standard techniques for human brain clearance imaging involve the injection of gadolinium-based contrast agents and monitoring their distribution and clearance over a period from a few hours up to 2 days. With both intrathecal and intravenous injections being used, which each have their own specific routes of distribution and thus clearance of contrast agent, a clear understanding of the kinetics associated with both approaches, and especially the differences between them, is needed to properly interpret the results. Because it is known that intrathecally injected contrast agent reaches the blood, albeit in small concentrations, and that similarly some of the intravenously injected agent can be detected in CSF, both pathways are connected and will, in theory, reach the same compartments. However, because of clear differences in relative enhancement patterns, both injection approaches will result in varying sensitivities for assessment of different subparts of the brain clearance system. In this opinion review article, the "EU Joint Programme - Neurodegenerative Disease Research (JPND)" consortium on human brain clearance imaging provides an overview of contrast agent pharmacokinetics in vivo following intrathecal and intravenous injections and what typical concentrations and concentration-time curves should be expected. This can be the basis for optimizing and interpreting contrast-enhanced MRI for brain clearance imaging. Furthermore, this can shed light on how molecules may exchange between blood, brain, and CSF.

14.
Nat Rev Neurosci ; 20(11): 667-685, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31537912

RESUMEN

Astrocytes are critical for maintaining the homeostasis of the CNS. Increasing evidence suggests that a number of neurological and neuropsychiatric disorders, including chronic pain, may result from astrocyte 'gliopathy'. Indeed, in recent years there has been substantial progress in our understanding of how astrocytes can regulate nociceptive synaptic transmission via neuronal-glial and glial-glial cell interactions, as well as the involvement of spinal and supraspinal astrocytes in the modulation of pain signalling and the maintenance of neuropathic pain. A role of astrocytes in the pathogenesis of chronic itch is also emerging. These developments suggest that targeting the specific pathways that are responsible for astrogliopathy may represent a novel approach to develop therapies for chronic pain and chronic itch.


Asunto(s)
Astrocitos/metabolismo , Comunicación Celular/fisiología , Dolor Crónico/metabolismo , Prurito/metabolismo , Animales , Astrocitos/patología , Dolor Crónico/patología , Homeostasis/fisiología , Humanos , Neuroglía/metabolismo , Neuroglía/patología , Prurito/patología , Sinapsis/metabolismo , Sinapsis/patología
15.
J Magn Reson Imaging ; 59(2): 431-449, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37141288

RESUMEN

Neurofluids is a term introduced to define all fluids in the brain and spine such as blood, cerebrospinal fluid, and interstitial fluid. Neuroscientists in the past millennium have steadily identified the several different fluid environments in the brain and spine that interact in a synchronized harmonious manner to assure a healthy microenvironment required for optimal neuroglial function. Neuroanatomists and biochemists have provided an incredible wealth of evidence revealing the anatomy of perivascular spaces, meninges and glia and their role in drainage of neuronal waste products. Human studies have been limited due to the restricted availability of noninvasive imaging modalities that can provide a high spatiotemporal depiction of the brain neurofluids. Therefore, animal studies have been key in advancing our knowledge of the temporal and spatial dynamics of fluids, for example, by injecting tracers with different molecular weights. Such studies have sparked interest to identify possible disruptions to neurofluids dynamics in human diseases such as small vessel disease, cerebral amyloid angiopathy, and dementia. However, key differences between rodent and human physiology should be considered when extrapolating these findings to understand the human brain. An increasing armamentarium of noninvasive MRI techniques is being built to identify markers of altered drainage pathways. During the three-day workshop organized by the International Society of Magnetic Resonance in Medicine that was held in Rome in September 2022, several of these concepts were discussed by a distinguished international faculty to lay the basis of what is known and where we still lack evidence. We envision that in the next decade, MRI will allow imaging of the physiology of neurofluid dynamics and drainage pathways in the human brain to identify true pathological processes underlying disease and to discover new avenues for early diagnoses and treatments including drug delivery. Evidence level: 1 Technical Efficacy: Stage 3.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Animales , Humanos , Ciudad de Roma , Encéfalo/patología , Líquido Extracelular , Meninges
16.
Anesthesiology ; 141(2): 338-352, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38787687

RESUMEN

BACKGROUND: Impaired glymphatic clearance of cerebral metabolic products and fluids contribute to traumatic and ischemic brain edema and neurodegeneration in preclinical models. Glymphatic perivascular cerebrospinal fluid flow varies between anesthetics possibly due to changes in vasomotor tone and thereby in the dynamics of the periarterial cerebrospinal fluid (CSF)-containing space. To better understand the influence of anesthetics and carbon dioxide levels on CSF dynamics, this study examined the effect of periarterial size modulation on CSF distribution by changing blood carbon dioxide levels and anesthetic regimens with opposing vasomotor influences: vasoconstrictive ketamine-dexmedetomidine (K/DEX) and vasodilatory isoflurane. METHODS: End-tidal carbon dioxide (ETco2) was modulated with either supplemental inhaled carbon dioxide to reach hypercapnia (Etco2, 80 mmHg) or hyperventilation (Etco2, 20 mmHg) in tracheostomized and anesthetized female rats. Distribution of intracisternally infused radiolabeled CSF tracer 111In-diethylamine pentaacetate was assessed for 86 min in (1) normoventilated (Etco2, 40 mmHg) K/DEX; (2) normoventilated isoflurane; (3) hypercapnic K/DEX; and (4) hyperventilated isoflurane groups using dynamic whole-body single-photon emission tomography. CSF volume changes were assessed with magnetic resonance imaging. RESULTS: Under normoventilation, cortical CSF tracer perfusion, perivascular space size around middle cerebral arteries, and intracranial CSF volume were higher under K/DEX compared with isoflurane (cortical maximum percentage of injected dose ratio, 2.33 [95% CI, 1.35 to 4.04]; perivascular size ratio 2.20 [95% CI, 1.09 to 4.45]; and intracranial CSF volume ratio, 1.90 [95% CI, 1.33 to 2.71]). Under isoflurane, tracer was directed to systemic circulation. Under K/DEX, the intracranial tracer distribution and CSF volume were uninfluenced by hypercapnia compared with normoventilation. Intracranial CSF tracer distribution was unaffected by hyperventilation under isoflurane despite a 28% increase in CSF volume around middle cerebral arteries. CONCLUSIONS: K/DEX and isoflurane overrode carbon dioxide as a regulator of CSF flow. K/DEX could be used to preserve CSF space and dynamics in hypercapnia, whereas hyperventilation was insufficient to increase cerebral CSF perfusion under isoflurane.


Asunto(s)
Dióxido de Carbono , Líquido Cefalorraquídeo , Sistema Glinfático , Ratas Sprague-Dawley , Respiración Artificial , Animales , Ratas , Sistema Glinfático/efectos de los fármacos , Sistema Glinfático/diagnóstico por imagen , Femenino , Líquido Cefalorraquídeo/efectos de los fármacos , Líquido Cefalorraquídeo/metabolismo , Anestesia/métodos , Isoflurano/farmacología
17.
Brain ; 146(3): 1141-1151, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35196379

RESUMEN

Alzheimer's disease is a neurodegenerative disorder in which the pathological accumulation of amyloid-ß and tau begins years before symptom onset. Emerging evidence suggests that ß-blockers (ß-adrenergic antagonists) increase brain clearance of these metabolites by enhancing CSF flow. Our objective was to determine whether ß-blocker treatments that easily cross the blood-brain barrier reduce the risk of Alzheimer's disease compared to less permeable ß-blockers. Data from the Danish national registers were used to identify a retrospective cohort of individuals with hypertension, and those treated with ß-blockers were included in the analysis. People with indications for ß-blocker use other than hypertension (e.g. heart failure) were only retained in a sensitivity analysis. ß-blockers were divided into three permeability groups: low, moderate and high. We used multivariable cause-specific Cox regression to model the effect of ß-blocker blood-brain barrier permeability on time to dementia outcomes, adjusting for baseline comorbidities, demographics and socioeconomic variables. Death was modelled as a competing risk. The 10-year standardized absolute risk was estimated as the averaged person-specific risks per treatment. In a cohort of 69 081 (median age = 64.4 years, 64.8% female) people treated with ß-blockers for hypertension, highly blood-brain barrier-permeable ß-blockers were associated with reduced risk of Alzheimer's disease versus low permeability ß-blockers (-0.45%, P < 0.036). This effect was specific to Alzheimer's diagnoses and did not extend to dementia in general. Propensity score analysis matching high and low blood-brain barrier-permeable patients also detected a decreased Alzheimer's risk (-0.92%, P < 0.001) in the high permeability group compared to the low, as did a 1-year landmark analysis (-0.57%, P < 0.029) in which events within the first year of follow-up were ignored as likely unrelated to treatment. Our results suggest that amongst people taking ß-blockers for hypertension, treatment with highly blood-brain barrier permeable ß-blockers reduces the risk of Alzheimer's disease compared to low permeability drugs. Our findings support the hypothesis that highly permeable ß-blockers protect against Alzheimer's disease by promoting waste brain metabolite clearance.


Asunto(s)
Enfermedad de Alzheimer , Hipertensión , Humanos , Femenino , Persona de Mediana Edad , Masculino , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/epidemiología , Barrera Hematoencefálica , Estudios Retrospectivos , Antagonistas Adrenérgicos beta/uso terapéutico , Hipertensión/tratamiento farmacológico , Hipertensión/inducido químicamente
18.
Int J Mol Sci ; 25(11)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38891923

RESUMEN

The ocular glymphatic system subserves the bidirectional polarized fluid transport in the optic nerve, whereby cerebrospinal fluid from the brain is directed along periarterial spaces towards the eye, and fluid from the retina is directed along perivenous spaces following upon its axonal transport across the glial lamina. Fluid homeostasis and waste removal are vital for retinal function, making the ocular glymphatic fluid pathway a potential route for targeted manipulation to combat blinding ocular diseases such as age-related macular degeneration, diabetic retinopathy, and glaucoma. Several lines of work investigating the bidirectional ocular glymphatic transport with varying methodologies have developed diverging mechanistic models, which has created some confusion about how ocular glymphatic transport should be defined. In this review, we provide a comprehensive summary of the current understanding of the ocular glymphatic system, aiming to address misconceptions and foster a cohesive understanding of the topic.


Asunto(s)
Sistema Glinfático , Humanos , Sistema Glinfático/fisiología , Sistema Glinfático/metabolismo , Animales , Nervio Óptico/metabolismo , Nervio Óptico/fisiología , Retina/metabolismo , Retina/fisiología , Ojo/metabolismo , Glaucoma/metabolismo , Glaucoma/fisiopatología , Glaucoma/patología
19.
J Neurosci ; 42(12): 2503-2515, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35135852

RESUMEN

The physiological underpinnings of the necessity of sleep remain uncertain. Recent evidence suggests that sleep increases the convection of cerebrospinal fluid (CSF) and promotes the export of interstitial solutes, thus providing a framework to explain why all vertebrate species require sleep. Cardiovascular, respiratory and vasomotor brain pulsations have each been shown to drive CSF flow along perivascular spaces, yet it is unknown how such pulsations may change during sleep in humans. To investigate these pulsation phenomena in relation to sleep, we simultaneously recorded fast fMRI, magnetic resonance encephalography (MREG), and electroencephalography (EEG) signals in a group of healthy volunteers. We quantified sleep-related changes in the signal frequency distributions by spectral entropy analysis and calculated the strength of the physiological (vasomotor, respiratory, and cardiac) brain pulsations by power sum analysis in 15 subjects (age 26.5 ± 4.2 years, 6 females). Finally, we identified spatial similarities between EEG slow oscillation (0.2-2 Hz) power and MREG pulsations. Compared with wakefulness, nonrapid eye movement (NREM) sleep was characterized by reduced spectral entropy and increased brain pulsation intensity. These effects were most pronounced in posterior brain areas for very low-frequency (≤0.1 Hz) vasomotor pulsations but were also evident brain-wide for respiratory pulsations, and to a lesser extent for cardiac brain pulsations. There was increased EEG slow oscillation power in brain regions spatially overlapping with those showing sleep-related MREG pulsation changes. We suggest that reduced spectral entropy and enhanced pulsation intensity are characteristic of NREM sleep. With our findings of increased power of slow oscillation, the present results support the proposition that sleep promotes fluid transport in human brain.SIGNIFICANCE STATEMENT We report that the spectral power of physiological brain pulsation mechanisms driven by vasomotor, respiration, and cardiac rhythms in human brain increase during sleep, extending previous observations of their association with glymphatic brain clearance during sleep in rodents. The magnitudes of increased pulsations follow the rank order of vasomotor greater than respiratory greater than cardiac pulsations, with correspondingly declining spatial extents. Spectral entropy, previously known as vigilance and as an anesthesia metric, decreased during NREM sleep compared with the awake state in very low and respiratory frequencies, indicating reduced signal complexity. An EEG slow oscillation power increase occurring in the early sleep phase (NREM 1-2) spatially overlapped with pulsation changes, indicating reciprocal mechanisms between those measures.


Asunto(s)
Encéfalo , Electroencefalografía , Encéfalo/fisiología , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Sueño/fisiología , Vigilia
20.
Neurobiol Dis ; 178: 106012, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36696792

RESUMEN

Tau protein pathology is a hallmark of many neurodegenerative diseases, including Alzheimer's Disease or frontotemporal dementia. Synaptic dysfunction and abnormal visual evoked potentials have been reported in murine models of tauopathy, but little is known about the state of the network activity on a single neuronal level prior to brain atrophy. In the present study, oscillatory rhythms and single-cell calcium activity of primary visual cortex pyramidal neuron population were investigated in basal and light evoked states in the rTg4510 tauopathy mouse model prior to neurodegeneration. We found a decrease in their responsivity and overall activity which was insensitive to GABAergic modulation. Despite an enhancement of basal state coactivation of cortical pyramidal neurons, a loss of input-output synchronicity was observed. Dysfunction of cortical pyramidal function was also reflected in a reduction of basal theta oscillations and enhanced susceptibility to a sub-convulsive dose of pentylenetetrazol in rTg4510 mice. Our results unveil impairments in visual cortical pyramidal neuron processing and define aberrant oscillations as biomarker candidates in early stages of neurodegenerative tauopathies.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Ratones , Animales , Potenciales Evocados Visuales , Ratones Transgénicos , Tauopatías/patología , Proteínas tau/genética , Proteínas tau/metabolismo , Neuronas/metabolismo , Enfermedad de Alzheimer/metabolismo , Modelos Animales de Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA