Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Toxicol Mech Methods ; 34(3): 283-299, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37946400

RESUMEN

Disruption of the immune system during embryonic brain development by environmental chemicals was proposed as a possible cause of neurodevelopmental disorders. We previously found adverse effects of di-n-octyltin dichloride (DOTC) on maternal and developing immune systems of rats in an extended one-generation reproductive toxicity study according to the OECD 443 test guideline. We hypothesize that the DOTC-induced changes in the immune system can affect neurodevelopment. Therefore, we used in-vivo MRI and PET imaging and genomics, in addition to behavioral testing and neuropathology as proposed in OECD test guideline 443, to investigate the effect of DOTC on structural and functional brain development. Male rats were exposed to DOTC (0, 3, 10, or 30 mg/kg of diet) from 2 weeks prior to mating of the F0-generation until sacrifice of F1-animals. The brains of rats, exposed to DOTC showed a transiently enlarged volume of specific brain regions (MRI), altered specific gravity, and transient hyper-metabolism ([18F]FDG PET). The alterations in brain development concurred with hyper-responsiveness in auditory startle response and slight hyperactivity in young adult animals. Genomics identified altered transcription of key regulators involved in neurodevelopment and neural function (e.g. Nrgrn, Shank3, Igf1r, Cck, Apba2, Foxp2); and regulators involved in cell size, cell proliferation, and organ development, especially immune system development and functioning (e.g. LOC679869, Itga11, Arhgap5, Cd47, Dlg1, Gas6, Cml5, Mef2c). The results suggest the involvement of immunotoxicity in the impairment of the nervous system by DOTC and support the hypothesis of a close connection between the immune and nervous systems in brain development.


Asunto(s)
Desoxicitidina/análogos & derivados , Compuestos Orgánicos de Estaño , Tionucleósidos , Embarazo , Femenino , Ratas , Masculino , Animales , Compuestos Orgánicos de Estaño/toxicidad , Encéfalo , Proteínas Portadoras , Proteínas del Tejido Nervioso , Cadherinas
2.
Basic Res Cardiol ; 117(1): 48, 2022 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-36205817

RESUMEN

Although p38 MAP Kinase α (p38 MAPKα) is generally accepted to play a central role in the cardiac stress response, to date its function in maladaptive cardiac hypertrophy is still not unambiguously defined. To induce a pathological type of cardiac hypertrophy we infused angiotensin II (AngII) for 2 days via osmotic mini pumps in control and tamoxifen-inducible, cardiomyocyte (CM)-specific p38 MAPKα KO mice (iCMp38αKO) and assessed cardiac function by echocardiography, complemented by transcriptomic, histological, and immune cell analysis. AngII treatment after inactivation of p38 MAPKα in CM results in left ventricular (LV) dilatation within 48 h (EDV: BL: 83.8 ± 22.5 µl, 48 h AngII: 109.7 ± 14.6 µl) and an ectopic lipid deposition in cardiomyocytes, reflecting a metabolic dysfunction in pressure overload (PO). This was accompanied by a concerted downregulation of transcripts for oxidative phosphorylation, TCA cycle, and fatty acid metabolism. Cardiac inflammation involving neutrophils, macrophages, B- and T-cells was significantly enhanced. Inhibition of adipose tissue lipolysis by the small molecule inhibitor of adipocytetriglyceride lipase (ATGL) Atglistatin reduced cardiac lipid accumulation by 70% and neutrophil infiltration by 30% and went along with an improved cardiac function. Direct targeting of neutrophils by means of anti Ly6G-antibody administration in vivo led to a reduced LV dilation in iCMp38αKO mice and an improved systolic function (EF: 39.27 ± 14%). Thus, adipose tissue lipolysis and CM lipid accumulation augmented cardiac inflammation in iCMp38αKO mice. Neutrophils, in particular, triggered the rapid left ventricular dilatation. We provide the first evidence that p38 MAPKα acts as an essential switch in cardiac adaptation to PO by mitigating metabolic dysfunction and inflammation. Moreover, we identified a heart-adipose tissue-immune cell crosstalk, which might serve as new therapeutic target in cardiac pathologies.


Asunto(s)
Insuficiencia Cardíaca , Miocitos Cardíacos , Tejido Adiposo/metabolismo , Angiotensina II/metabolismo , Animales , Cardiomegalia/metabolismo , Ácidos Grasos/metabolismo , Inflamación/metabolismo , Lipasa/metabolismo , Lipasa/uso terapéutico , Lípidos/uso terapéutico , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Neutrófilos/metabolismo , Tamoxifeno/metabolismo , Tamoxifeno/uso terapéutico , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/uso terapéutico
3.
Cardiovasc Drugs Ther ; 35(4): 745-758, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33914182

RESUMEN

PURPOSE: Sonlicromanol is a phase IIB clinical stage compound developed for treatment of mitochondrial diseases. Its active component, KH176m, functions as an antioxidant, directly scavenging reactive oxygen species (ROS), and redox activator, boosting the peroxiredoxin-thioredoxin system. Here, we examined KH176m's potential to protect against acute cardiac ischemia-reperfusion injury (IRI), compare it with the classic antioxidant N-(2-mercaptopropionyl)-glycine (MPG), and determine whether protection depends on duration (severity) of ischemia. METHODS: Isolated C56Bl/6N mouse hearts were Langendorff-perfused and subjected to short (20 min) or long (30 min) ischemia, followed by reperfusion. During perfusion, hearts were treated with saline, 10 µM KH176m, or 1 mM MPG. Cardiac function, cell death (necrosis), and mitochondrial damage (cytochrome c (CytC) release) were evaluated. In additional series, the effect of KH176m treatment on the irreversible oxidative stress marker 4-hydroxy-2-nonenal (4-HNE), formed during ischemia only, was determined at 30-min reperfusion. RESULTS: During baseline conditions, both drugs reduced cardiac performance, with opposing effects on vascular resistance (increased with KH176m, decreased with MPG). For short ischemia, KH176m robustly reduced all cell death parameters: LDH release (0.2 ± 0.2 vs 0.8 ± 0.5 U/min/GWW), infarct size (15 ± 8 vs 31 ± 20%), and CytC release (168.0 ± 151.9 vs 790.8 ± 453.6 ng/min/GWW). Protection by KH176m was associated with decreased cardiac 4-HNE. MPG only reduced CytC release. Following long ischemia, IRI was doubled, and KH176m and MPG now only reduced LDH release. The reduced protection against long ischemia was associated with the inability to reduce cardiac 4-HNE. CONCLUSION: Protection against cardiac IRI by the antioxidant KH176m is critically dependent on duration of ischemia. The data suggest that with longer ischemia, the capacity of KH176m to reduce cardiac oxidative stress is rate-limiting, irreversible ischemic oxidative damage maximally accumulates, and antioxidant protection is strongly diminished.


Asunto(s)
Cromanos/farmacología , Daño por Reperfusión Miocárdica , Oxidación-Reducción/efectos de los fármacos , Aldehídos/metabolismo , Animales , Antioxidantes/farmacología , Modelos Animales de Enfermedad , Ratones , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/prevención & control , Estrés Oxidativo/efectos de los fármacos , Tiempo de Tratamiento , Tiopronina/farmacología , Resultado del Tratamiento
4.
Mol Ther ; 27(1): 46-58, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30528085

RESUMEN

Insulin-like growth factor 1 (IGF1) is an anabolic hormone that controls the growth and metabolism of many cell types. However, IGF1 also mediates cardio-protective effects after acute myocardial infarction (AMI), but the underlying mechanisms and cellular targets are not fully understood. Here we demonstrate that short-term IGF1 treatment for 3 days after AMI improved cardiac function after 1 and 4 weeks. Regional wall motion was improved in ischemic segments, scar size was reduced, and capillary density increased in the infarcted area and the border zone. Unexpectedly, inducible inactivation of the IGF1 receptor (IGF1R) in cardiomyocytes did not attenuate the protective effect of IGF1. Sequential cardiac transcriptomic analysis indicated an altered myeloid cell response in the acute phase after AMI, and, notably, myeloid-cell Igf1r-/- mice lost the protective IGF1 function after I/R. In addition, IGF1 induced an M2-like anti-inflammatory phenotype in bone marrow-derived macrophages and enhanced the number of anti-inflammatory macrophages in heart tissue on day 3 after AMI in vivo. In summary, modulation of the acute inflammatory phase after AMI by IGF1 represents an effective mechanism to preserve cardiac function after I/R.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina/uso terapéutico , Células Mieloides/efectos de los fármacos , Infarto del Miocardio/tratamiento farmacológico , Animales , Ecocardiografía , Citometría de Flujo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo
6.
BMC Anesthesiol ; 17(1): 51, 2017 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-28356068

RESUMEN

BACKGROUND: Remote ischemic preconditioning (RIPC) efficacy is debated. Possibly, because propofol, which has a RIPC-inhibiting action, is used in most RIPC trials. It has been suggested that clinical efficacy is, however, present with volatile anesthesia in the absence of propofol, although this is based on one phase 1 trial only. Therefore, in the present study we further explore the relation between RIPC and cardioprotection with perioperative anesthesia restricted to sevoflurane and fentanyl, in CABG patients without concomitant procedures. METHODS: In a single-center study, we aimed to randomize 46 patients to either RIPC (3x5 min inflation of a blood pressure cuff around the arm) or control treatment (deflated cuff around the arm). Blood samples were obtained before and after RIPC to evaluate potential RIPC-induced mediators (Interleukin (IL)-6, IL-10, Tumor Necrosis Factor-α, Macrophage Inhibitory Factor). An atrial tissue sample was obtained at cannulation of the appendix of the right atrium for determination of mitochondrial bound hexokinase II (mtHKII) and other survival proteins (Akt and AMP-activated protein kinase α). In blood samples taken before and 6, 12 and 24 h after surgery cardiac troponin T (cTnT) and C-reactive protein (CRP) were determined. Surgery was strictly performed under sevoflurane anesthesia (no propofol). RESULTS: We actually randomized 16 patients to control treatment and 13 patients to RIPC. The mean 24 h area under the curve (AUC) cTnT was 11.44 (standard deviation 4.66) in the control group and 10.90 (standard deviation 4.73) in the RIPC group (mean difference 0.54, 95% CI -3.06 to 4.13; p = 0.76). The mean 24 h AUC CRP was 1319 (standard deviation 92) in the control group and 1273 (standard deviation 141) in the RIPC group (mean difference 46.2, 95% CI -288 to 380; p = 0.78). RIPC was without effect on survival proteins in atrial tissue samples obtained before surgery (mitochondrial hexokinase, Akt and AMPK) and inflammatory mediators obtained before and immediately after RIPC (IL-6, IL-10, TNF-α, macrophage migration inhibitory factor). CONCLUSION: Many factors can interfere with the outcome of RIPC. Trying to correct for this led to strict inclusion criteria, which, in combination with a decreased institutional frequency of CABG without concomitant procedures and a change in institutional anesthetic regimen away from volatile anesthetics towards total intravenous anesthesia, caused slow inclusion and halting of this trial after 3 years, before target inclusion could be reached. Therefore this study is underpowered to prove its primary goal that RIPC reduced AUC cTnT by < 25%. Nevertheless, we have shown that the effect of RIPC on 24 h AUC cTnT, in cardiac surgery with anesthesia during surgery restricted to sevoflurane/fentanyl (no propofol), was between a decrease of 27% and an increase of 36%. These findings are not in line with previous studies in this field. TRIAL REGISTRATION: The Netherlands Trial Register: NTR2915 ; Registered 25 Mei 2011.


Asunto(s)
Cardiotónicos/uso terapéutico , Precondicionamiento Isquémico/métodos , Éteres Metílicos/uso terapéutico , Proteínas Quinasas Activadas por AMP/metabolismo , Anciano , Anestésicos por Inhalación/uso terapéutico , Proteína C-Reactiva/metabolismo , Puente de Arteria Coronaria/métodos , Atrios Cardíacos/metabolismo , Hexoquinasa/metabolismo , Humanos , Interleucina-10/sangre , Interleucina-6/sangre , Oxidorreductasas Intramoleculares/sangre , Factores Inhibidores de la Migración de Macrófagos/sangre , Masculino , Proteína Oncogénica v-akt/metabolismo , Sevoflurano , Troponina T/sangre , Factor de Necrosis Tumoral alfa/sangre
7.
Circ Res ; 112(2): e8-13, 2013 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-23329797

RESUMEN

RATIONALE: We have shown that partial dissociation of hexokinase II (HKII) from mitochondria in the intact heart using low-dose transactivating transcriptional factor (TAT)-HKII (200 nmol/L) prevents the cardioprotective effects of ischemic preconditioning, whereas high-dose TAT-HKII (10 µmol/L) administration results in rapid myocardial dysfunction, mitochondrial depolarization, and disintegration. In this issue of Circulation Research, Pasdois et al argue that the deleterious effects of TAT-HKII administration on cardiac function are likely because of vasoconstriction and ensuing ischemia. OBJECTIVE: To investigate whether altered vascular function and ensuing ischemia recapitulate the deleterious effects of TAT-HKII in intact myocardium. METHODS AND RESULTS: Using a variety of complementary techniques, including mitochondrial membrane potential (ΔΨm) imaging, high-resolution optical action potential mapping, analysis of lactate production, nicotinamide adenine dinucleotide epifluorescence, lactate dehydrogenase release, and electron microscopy, we provide direct evidence that refutes the notion that acute myocardial dysfunction by high-dose TAT-HKII peptide administration is a consequence of impaired vascular function. Moreover, we demonstrate that low-dose TAT-HKII treatment, which abrogates the protective effects of ischemic preconditioning, is not associated with ischemia or ischemic injury. CONCLUSIONS: Our findings challenge the notion that the effects of TAT-HKII are attributable to impaired vascular function and ensuing ischemia, thereby lending further credence to the role of mitochondria-bound HKII as a critical regulator of cardiac function, ischemia-reperfusion injury, and cardioprotection by ischemic preconditioning.


Asunto(s)
Circulación Coronaria/fisiología , Productos del Gen tat/administración & dosificación , Hexoquinasa/administración & dosificación , Daño por Reperfusión Miocárdica/inducido químicamente , Perfusión/métodos , Vasoconstricción/fisiología , Animales , Masculino
8.
Circ Res ; 108(10): 1165-9, 2011 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-21527739

RESUMEN

RATIONALE: Isoforms I and II of the glycolytic enzyme hexokinase (HKI and HKII) are known to associate with mitochondria. It is unknown whether mitochondria-bound hexokinase is mandatory for ischemic preconditioning and normal functioning of the intact, beating heart. OBJECTIVE: We hypothesized that reducing mitochondrial hexokinase would abrogate ischemic preconditioning and disrupt myocardial function. METHODS AND RESULTS: Ex vivo perfused HKII(+/-) hearts exhibited increased cell death after ischemia and reperfusion injury compared with wild-type hearts; however, ischemic preconditioning was unaffected. To investigate acute reductions in mitochondrial HKII levels, wild-type hearts were treated with a TAT control peptide or a TAT-HK peptide that contained the binding motif of HKII to mitochondria, thereby disrupting the mitochondrial HKII association. Mitochondrial hexokinase was determined by HKI and HKII immunogold labeling and electron microscopy analysis. Low-dose (200 nmol/L) TAT-HK treatment significantly decreased mitochondrial HKII levels without affecting baseline cardiac function but dramatically increased ischemia-reperfusion injury and prevented the protective effects of ischemic preconditioning. Treatment for 15 minutes with high-dose (10 µmol/L) TAT-HK resulted in acute mitochondrial depolarization, mitochondrial swelling, profound contractile impairment, and severe cardiac disintegration. The detrimental effects of TAT-HK treatment were mimicked by mitochondrial membrane depolarization after mild mitochondrial uncoupling that did not cause direct mitochondrial permeability transition opening. CONCLUSIONS: Acute low-dose dissociation of HKII from mitochondria in heart prevented ischemic preconditioning, whereas high-dose HKII dissociation caused cessation of cardiac contraction and tissue disruption, likely through an acute mitochondrial membrane depolarization mechanism. The results suggest that the association of HKII with mitochondria is essential for the protective effects of ischemic preconditioning and normal cardiac function through maintenance of mitochondrial potential.


Asunto(s)
Hexoquinasa/metabolismo , Precondicionamiento Isquémico Miocárdico/métodos , Potencial de la Membrana Mitocondrial , Mitocondrias Cardíacas/enzimología , Mitocondrias Cardíacas/patología , Miocardio/enzimología , Miocardio/patología , Animales , Tamización de Portadores Genéticos , Hexoquinasa/deficiencia , Hexoquinasa/genética , Masculino , Potencial de la Membrana Mitocondrial/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias Cardíacas/genética , Necrosis/enzimología , Necrosis/genética , Necrosis/patología , Unión Proteica/genética , Ratas , Factores de Tiempo , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/fisiología
9.
Mol Biol Rep ; 40(7): 4153-60, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23652994

RESUMEN

Diabetes mellitus (DM) has been reported to alter the cardiac response to ischemia-reperfusion (IR). In addition, cardioprotection induced by ischemic preconditioning (IPC) is often impaired in diabetes. We have previously shown that the subcellular localisation of the glycolytic enzyme hexokinase (HK) is causally related to IR injury and IPC protective potential. Especially the binding of HK to mitochondria and prevention of HK solubilisation (HK detachment from mitochondria) during ischemia confers cardioprotection. It is unknown whether diabetes affects HK localisation during IR and IPC as compared to non-diabetes. In this study we hypothesize that DM alters cellular trafficking of hexokinase in response to IR and IPC, possibly explaining the altered response to IR and IPC in diabetic heart. Control (CON) and type I diabetic (DM) rat hearts (65 mg/kg streptozotocin, 4 weeks) were isolated and perfused in Langendorff-mode and subjected to 35 min I and 30 min R with or without IPC (3 times 5 min I). Cytosolic and mitochondrial fractions were obtained at (1) baseline, i.e. after IPC but before I, (2) 35 min I, (3) 5 min R and (4) 30 min R. DM improved rate-pressure product recovery (RPP; 71 ± 10 % baseline (DM) versus 9 ± 1 % baseline (CON) and decreased contracture (end-diastolic pressure: 24 ± 8 mmHg (DM) vs 77 ± 4 mmHg (CON)) after IR as compared to control, and was associated with prevention of HK solubilisation at 35 min I. IPC improved cardiac function in CON but not in DM hearts. IPC in CON prevented HK solubilisation at 35 min I and at 5 min R, with a trend for increased mitochondrial HK. In contrast, the non-effective IPC in DM was associated with solubilisation of HK and decreased mitochondrial HK at early reperfusion and a reciprocal behaviour at late reperfusion. We conclude that type I DM significantly altered cellular HK translocation patterns in the heart in response to IR and IPC, possibly explaining altered response to IR and IPC in diabetes.


Asunto(s)
Diabetes Mellitus Tipo 1/complicaciones , Hexoquinasa/metabolismo , Precondicionamiento Isquémico Miocárdico , Daño por Reperfusión/etiología , Daño por Reperfusión/metabolismo , Animales , Modelos Animales de Enfermedad , Activación Enzimática , Masculino , Mitocondrias/metabolismo , Miocardio/enzimología , Miocardio/patología , Ratas , Daño por Reperfusión/enzimología , Factores de Tiempo
10.
Front Immunol ; 13: 908023, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35911749

RESUMEN

Acute myocardial infarction (MI) induces an extensive sterile inflammation, which is dominated in the early phase by invading neutrophils and monocytes/macrophages. The inflammatory response after MI critically affects infarct healing and cardiac remodeling. Therefore, modulation of cardiac inflammation may improve outcome post MI. Insulin-like growth factor 1 (IGF1) treatment reduces infarct size and improves cardiac function after MI via IGF1 receptor mediated signaling in myeloid cells. Our study aimed to investigate the effect of IGF1 on neutrophil phenotype both in vitro and in vivo after MI. We show that IGF1 induces an anti-inflammatory phenotype in bone marrow derived neutrophils. On the molecular and functional level IGF1 treated neutrophils were indistinguishable from those induced by IL4. Surprisingly, insulin, even though it is highly similar to IGF1 did not create anti-inflammatory neutrophils. Notably, the IGF1 effect was independent of the canonical Ras/Raf/ERK or PI3K/AKT pathway, but depended on activation of the JAK2/STAT6 pathway, which was not activated by insulin treatment. Single cell sequencing analysis 3 days after MI also showed that 3 day IGF1 treatment caused a downregulation of pro-inflammatory genes and upstream regulators in most neutrophil and many macrophage cell clusters whereas anti-inflammatory genes and upstream regulators were upregulated. Thus, IGF1 acts like an anti-inflammatory cytokine on myeloid cells in vitro and attenuates the pro-inflammatory phenotype of neutrophils and macrophages in vivo after MI. IGF1 treatment might therefore represent an effective immune modulatory therapy to improve the outcome after MI.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina , Infarto del Miocardio , Neutrófilos , Antiinflamatorios/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Humanos , Inflamación/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/farmacología , Insulinas/uso terapéutico , Infarto del Miocardio/metabolismo , Neutrófilos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo
11.
Front Cardiovasc Med ; 8: 712478, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34527711

RESUMEN

Background: Cardioprotective strategies against ischemia-reperfusion injury (IRI) that remain effective in the clinical arena need to be developed. Therefore, maintained efficacy of cardioprotective strategies in the presence of drugs routinely used clinically (e.g., opiates, benzodiazepines, P2Y12 antagonist, propofol) need to be identified in preclinical models. Methods: Here, we examined the efficacy of promising cardioprotective compounds [fingolimod (Fingo), empagliflozin (Empa), melatonin (Mela) and nicotinamide riboside (NR)] administered i.v. as bolus before start ischemia. Infarct size as percentage of the area of risk (IS%) was determined following 25 min of left ascending coronary (LAD) ischemia and 2 h of reperfusion in a fentanyl-midazolam anesthetized IRI rat model. Plasma lactate dehydrogenase (LDH) activity at 30 min reperfusion was determined as secondary outcome parameter. Following pilot dose-response experiments of each compound (3 dosages, n = 4-6 animals per dosage), potential cardioprotective drugs at the optimal observed dosage were subsequently tested alone or in combination (n = 6-8 animals per group). The effective treatment was subsequently tested in the presence of a P2Y12 antagonist (cangrelor; n = 6/7) or propofol aesthesia (n = 6 both groups). Results: Pilot studies suggested potential cardioprotective effects for 50 mg/kg NR (p = 0.005) and 500 µg/kg melatonin (p = 0.12), but not for Empa or Fingo. Protection was subsequently tested in a new series of experiments for solvents, NR, Mela and NR+Mela. Results demonstrated that only singular NR was able to reduce IS% (30 ± 14 vs. 60 ± 16%, P = 0.009 vs. control). Mela (63 ± 18%) and NR+Mela (47 ± 15%) were unable to significantly decrease IS%. NR still reduced IS in the presence of cangrelor (51 ± 18 vs. 71 ± 4%, P = 0.016 vs. control), but lost protection in the presence of propofol anesthesia (62 ± 16 vs. 60 ± 14%, P = 0.839 vs. control). LDH activity measurements supported all IS% results. Conclusion: This observational study suggests that NR is a promising cardioprotective agent to target cardiac ischemia-reperfusion injury in clinical conditions employing opioid agonists, benzodiazepines and platelet P2Y12 inhibitors, but not propofol.

12.
Front Immunol ; 11: 591815, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33362773

RESUMEN

Background: NOD-like receptors (NLR) are intracellular sensors of the innate immune system, with the NLRP3 being a pro-inflammatory member that modulates cardiac ischemia-reperfusion injury (IRI) and metabolism. No information is available on a possible role of anti-inflammatory NLRs on IRI and metabolism in the intact heart. Here we hypothesize that the constitutively expressed, anti-inflammatory mitochondrial NLRX1, affects IRI and metabolism of the isolated mouse heart. Methods: Isolated C57Bl/6J and NLRX1 knock-out (KO) mouse hearts were perfused with a physiological mixture of the essential substrates (lactate, glucose, pyruvate, fatty acid, glutamine) and insulin. For the IRI studies, hearts were subjected to either mild (20 min) or severe (35 min) ischemia and IRI was determined at 60 min reperfusion. Inflammatory mediators (IL-6, TNFα) and survival pathways (mito-HKII, p-Akt, p-AMPK, p-STAT3) were analyzed at 5 min of reperfusion. For the metabolism studies, hearts were perfused for 35 min with either 5.5 mM 13C-glucose or 0.4 mM 13C-palmitate under normoxic conditions, followed by LC-MS analysis and integrated, stepwise, mass-isotopomeric flux analysis (MIMOSA). Results: NLRX1 KO significantly increased IRI (infarct size from 63% to 73%, end-diastolic pressure from 59 mmHg to 75 mmHg, and rate-pressure-product recovery from 15% to 6%), following severe, but not mild, ischemia. The increased IRI in NLRX1 KO hearts was associated with depressed Akt signaling at early reperfusion; other survival pathways or inflammatory parameters were not affected. Metabolically, NLRX1 KO hearts displayed increased lactate production and glucose oxidation relative to fatty acid oxidation, associated with increased pyruvate dehydrogenase flux and 10% higher cardiac oxygen consumption. Conclusion: Deletion of the mitochondrially-located NOD-like sensor NLRX1 exacerbates severe cardiac IR injury, possibly through impaired Akt signaling, and increases cardiac glucose metabolism.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Eliminación de Gen , Glucosa/metabolismo , Proteínas Mitocondriales/genética , Daño por Reperfusión Miocárdica/etiología , Daño por Reperfusión Miocárdica/metabolismo , Animales , Biomarcadores , Citocinas/metabolismo , Modelos Animales de Enfermedad , Ratones , Ratones Noqueados , Daño por Reperfusión Miocárdica/patología , Oxidación-Reducción , Estrés Oxidativo , Proteínas Proto-Oncogénicas c-akt/metabolismo
13.
Cardiovasc Res ; 115(10): 1533-1545, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-30649212

RESUMEN

AIMS: Sodium glucose cotransporter 2 (SGLT2) inhibitors have sodium-hydrogen exchanger (NHE) inhibition properties in isolated cardiomyocytes, but it is unknown whether these properties extend to the intact heart during ischaemia-reperfusion (IR) conditions. NHE inhibitors as Cariporide delay time to onset of contracture (TOC) during ischaemia and reduce IR injury. We hypothesized that, in the ex vivo heart, Empagliflozin (Empa) mimics Cariporide during IR by delaying TOC and reducing IR injury. To facilitate translation to in vivo conditions with insulin present, effects were examined in the absence and presence of insulin. METHODS AND RESULTS: Isolated C57Bl/6NCrl mouse hearts were subjected to 25 min I and 120 min R without and with 50 mU/L insulin. Without insulin, Empa and Cari delayed TOC by 100 and 129 s, respectively, yet only Cariporide reduced IR injury [infarct size (mean ± SEM in %) from 51 ± 6 to 34 ± 5]. Empa did not delay TOC in the presence of the NHE1 inhibitor Eniporide. Insulin perfusion increased tissue glycogen content at baseline (from 2 ± 2 µmol to 42 ± 1 µmol glycosyl units/g heart dry weight), amplified G6P and lactate accumulation at end-ischaemia, thereby decreased mtHKII and exacerbated IR injury. Under these conditions, Empa (1 µM) and Cariporide (10 µM) were without effect on TOC and IR injury. Empa and Cariporide both inhibited NHE activity, in isolated cardiomyocytes, independent of insulin. CONCLUSIONS: In the absence of insulin, Empa and Cariporide strongly delayed the time to onset of contracture during ischaemia. In the presence of insulin, both Empa and Cari were without effect on IR, possibly because of severe ischaemic acidification. Insulin exacerbates IR injury through increased glycogen depletion during ischaemia and consequently mtHKII dissociation. The data suggest that also in the ex vivo intact heart Empa exerts direct cardiac effects by inhibiting NHE during ischaemia, but not during reperfusion.


Asunto(s)
Compuestos de Bencidrilo/farmacología , Glucósidos/farmacología , Guanidinas/farmacología , Insulina/farmacología , Contracción Miocárdica/efectos de los fármacos , Infarto del Miocardio/prevención & control , Daño por Reperfusión Miocárdica/prevención & control , Miocitos Cardíacos/efectos de los fármacos , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Intercambiador 1 de Sodio-Hidrógeno/antagonistas & inhibidores , Sulfonas/farmacología , Animales , Modelos Animales de Enfermedad , Preparación de Corazón Aislado , Masculino , Ratones Endogámicos C57BL , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/fisiopatología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Transducción de Señal , Intercambiador 1 de Sodio-Hidrógeno/metabolismo , Factores de Tiempo
14.
Ultrasound Med Biol ; 44(7): 1544-1555, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29706407

RESUMEN

Although echocardiography is commonly used to analyze cardiac function in small animal models of cardiac remodeling after myocardial infarction, the different echocardiographic methods are validated poorly. End-diastolic volume, end-systolic volume and ejection fraction were analyzed using either standard single-plane analysis from parasternal long-axis B-mode views (PSLAX) or the bi-plane Simpson method (using PSLAX and three short-axis views) and validated using magnetic resonance imaging as standard. Ejection fraction measured by PSLAX was moderately correlated with a coefficient of R2 = 0.49. The standard deviation of residuals was 9.91. Simpson analysis revealed an improved correlation coefficient of R2 = 0.77 and a reduction in standard deviation of residuals by 45% (5.45 vs. 9.92, p = 0.014). Subgroup analysis revealed that the high variation in PSLAX is due to changes in ventricular geometry after myocardial infarction. Our results indicate that the bi-plane Simpson method is advantageous for the assessment of cardiac function after myocardial infarction.


Asunto(s)
Ecocardiografía/métodos , Corazón/efectos de los fármacos , Corazón/fisiopatología , Procesamiento de Imagen Asistido por Computador/métodos , Infarto del Miocardio/fisiopatología , Animales , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Infarto del Miocardio/diagnóstico por imagen , Reproducibilidad de los Resultados
15.
Cardiovasc Res ; 114(10): 1324-1334, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29635338

RESUMEN

Aims: Mitochondrial fatty acid oxidation (FAO) is an important energy provider for cardiac work and changes in cardiac substrate preference are associated with different heart diseases. Carnitine palmitoyltransferase 1B (CPT1B) is thought to perform the rate limiting enzyme step in FAO and is inhibited by malonyl-CoA. The role of CPT1B in cardiac metabolism has been addressed by inhibiting or decreasing CPT1B protein or after modulation of tissue malonyl-CoA metabolism. We assessed the role of CPT1B malonyl-CoA sensitivity in cardiac metabolism. Methods and results: We generated and characterized a knock in mouse model expressing the CPT1BE3A mutant enzyme, which has reduced sensitivity to malonyl-CoA. In isolated perfused hearts, FAO was 1.9-fold higher in Cpt1bE3A/E3A hearts compared with Cpt1bWT/WT hearts. Metabolomic, proteomic and transcriptomic analysis showed increased levels of malonylcarnitine, decreased concentration of CPT1B protein and a small but coordinated downregulation of the mRNA expression of genes involved in FAO in Cpt1bE3A/E3A hearts, all of which aim to limit FAO. In vivo assessment of cardiac function revealed only minor changes, cardiac hypertrophy was absent and histological analysis did not reveal fibrosis. Conclusions: Malonyl-CoA-dependent inhibition of CPT1B plays a crucial role in regulating FAO rate in the heart. Chronic elevation of FAO has a relatively subtle impact on cardiac function at least under baseline conditions.


Asunto(s)
Carnitina O-Palmitoiltransferasa/metabolismo , Metabolismo Energético , Ácidos Grasos/metabolismo , Malonil Coenzima A/metabolismo , Mitocondrias Cardíacas/enzimología , Miocardio/enzimología , Animales , Carnitina O-Palmitoiltransferasa/genética , Genotipo , Glucosa/metabolismo , Glucólisis , Preparación de Corazón Aislado , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Oxidación-Reducción , Fenotipo , Función Ventricular Izquierda
16.
Sci Rep ; 7(1): 12749, 2017 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-28986541

RESUMEN

Both the absence of cyclophilin D (CypD) and the presence of mitochondrial bound hexokinase II (mtHKII) protect the heart against ischemia/reperfusion (I/R) injury. It is unknown whether CypD determines the amount of mtHKII in the heart. We examined whether CypD affects mtHK in normoxic, ischemic and preconditioned isolated mouse hearts. Wild type (WT) and CypD-/- mouse hearts were perfused with glucose only and subjected to 25 min ischemia and reperfusion. At baseline, cytosolic and mtHK was similar between hearts. CypD ablation protected against I/R injury and increased ischemic preconditioning (IPC) effects, without affecting end-ischemic mtHK. When hearts were perfused with glucose, glutamine, pyruvate and lactate, the preparation was more stable and CypD ablation-resulted in more protection that was associated with increased mtHK activity, leaving little room for additional protection by IPC. In conclusion, in glucose only-perfused hearts, deletion of CypD is not associated with end-ischemic mitochondrial-HK binding. In contrast, in the physiologically more relevant multiple-substrate perfusion model, deletion of CypD is associated with an increased mtHK activity, possibly explaining the increased protection against I/R injury.


Asunto(s)
Ciclofilinas/metabolismo , Eliminación de Gen , Hexoquinasa/metabolismo , Mitocondrias Cardíacas/metabolismo , Isquemia Miocárdica/metabolismo , Animales , Peptidil-Prolil Isomerasa F , Femenino , Glucosa/farmacología , Glutamina/metabolismo , Precondicionamiento Isquémico Miocárdico , Ácido Láctico/metabolismo , Masculino , Ratones Endogámicos C57BL , Miocardio/metabolismo , Perfusión , Ácido Pirúvico/metabolismo , Especificidad por Sustrato , Factores de Tiempo
17.
Metabolism ; 72: 66-74, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28641785

RESUMEN

OBJECTIVE: Cardiac hexokinase II (HKII) can translocate between cytosol and mitochondria and change its cellular expression with pathologies such as ischemia-reperfusion, diabetes and heart failure. The cardiac metabolic consequences of these changes are unknown. Here we measured energy substrate utilization in cytosol and mitochondria using stabile isotopes and oxygen consumption of the intact perfused heart for 1) an acute decrease in mitochondrial HKII (mtHKII), and 2) a chronic decrease in total cellular HKII. METHODS/RESULTS: We first examined effects of 200nM TAT (Trans-Activator of Transcription)-HKII peptide treatment, which was previously shown to acutely decrease mtHKII by ~30%. In Langendorff-perfused hearts TAT-HKII resulted in a modest, but significant, increased oxygen consumption, while cardiac performance was unchanged. At the metabolic level, there was a nonsignificant (p=0.076) ~40% decrease in glucose contribution to pyruvate and lactate formation through glycolysis and to mitochondrial citrate synthase flux (6.6±1.1 vs. 11.2±2.2%), and an 35% increase in tissue pyruvate (27±2 vs. 20±2pmol/mg; p=0.033). Secondly, we compared WT and HKII+/- hearts (50% chronic decrease in total HKII). RNA sequencing revealed no differential gene expression between WT and HKII+/- hearts indicating an absence of metabolic reprogramming at the transcriptional level. Langendorff-perfused hearts showed no significant differences in glycolysis (0.34±0.03µmol/min), glucose contribution to citrate synthase flux (35±2.3%), palmitate contribution to citrate synthase flux (20±1.1%), oxygen consumption or mechanical performance between WT and HKII+/- hearts. CONCLUSIONS: These results indicate that acute albeit not chronic changes in mitochondrial HKII modestly affect cardiac oxygen consumption and energy substrate metabolism.


Asunto(s)
Hexoquinasa/metabolismo , Mitocondrias/metabolismo , Miocardio/metabolismo , Consumo de Oxígeno , Animales , Metabolismo Energético , Preparación de Corazón Aislado , Ratones , Miocardio/ultraestructura
18.
J Physiol Biochem ; 73(3): 323-333, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28258543

RESUMEN

Ischemia/reperfusion (I/R) of the heart becomes injurious when duration of the ischemic insult exceeds a certain threshold (approximately ≥20 min). Mitochondrial bound hexokinase II (mtHKII) protects against I/R injury, with the amount of mtHKII correlating with injury. Here, we examine whether mtHKII can induce the transition from non-injurious to injurious I/R, by detaching HKII from mitochondria during a non-injurious I/R interval. Additionally, we examine possible underlying mechanisms (increased reactive oxygen species (ROS), increased oxygen consumption (MVO2) and decreased cardiac energetics) associated with this transition. Langendorff perfused rat hearts were treated for 20 min with saline, TAT-only or 200 nM TAT-HKII, a peptide that translocates HKII from mitochondria. Then, hearts were exposed to non-injurious 15-min ischemia, followed by 30-min reperfusion. I/R injury was determined by necrosis (LDH release) and cardiac mechanical recovery. ROS were measured by DHE fluorescence. Changes in cardiac respiratory activity (cardiac MVO2 and efficiency and mitochondrial oxygen tension (mitoPO2) using protoporphyrin IX) and cardiac energetics (ATP, PCr, ∆GATP) were determined following peptide treatment. When exposed to 15-min ischemia, control hearts had no necrosis and 85% recovery of function. Conversely, TAT-HKII treatment resulted in significant LDH release and reduced cardiac recovery (25%), indicating injurious I/R. This was associated with increased ROS during ischemia and reperfusion. TAT-HKII treatment reduced MVO2 and improved energetics (increased PCr) before ischemia, without affecting MVO2/RPP ratio or mitoPO2. In conclusion, a reduction in mtHKII turns non-injurious I/R into injurious I/R. Loss of mtHKII was associated with increased ROS during ischemia and reperfusion, but not with increased MVO2 or decreased cardiac energetics before damage occurs.


Asunto(s)
Hexoquinasa/metabolismo , Mitocondrias Cardíacas/enzimología , Daño por Reperfusión Miocárdica/enzimología , Adenosina Trifosfato/metabolismo , Animales , Metabolismo Energético , Masculino , Miocardio/enzimología , Oxidación-Reducción , Consumo de Oxígeno , Fosfocreatina/metabolismo , Unión Proteica , Transporte de Proteínas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo
19.
Lancet Diabetes Endocrinol ; 3(8): 615-23, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26179504

RESUMEN

BACKGROUND: During coronary artery bypass graft (CABG) surgery, ischaemia and reperfusion damage myocardial tissue, and increased postoperative plasma troponin concentration is associated with a worse outcome. We investigated whether metformin pretreatment limits cardiac injury, assessed by troponin concentrations, during CABG surgery in patients without diabetes. METHODS: We did a placebo-controlled, double-blind, single-centre study in an academic hospital in Nijmegen (Netherlands) in adult patients without diabetes undergoing an elective on-pump CABG procedure. We randomly assigned patients (1:1) in blocks of ten via a computer-generated randomisation sequence to either metformin hydrochloride (500 mg three times per day) or placebo (three times per day) for 3 days before surgery. The last dose was given roughly 3 h before surgery. Patients, investigators, trial staff, and the statistician were all masked to treatment allocation. The primary endpoint was the plasma concentration of high-sensitive troponin I at 6, 12, and 24 h postreperfusion after surgery, analysed in the per-protocol population with a mixed-model analysis using all these timepoints. Secondary endpoints included the occurrence of clinically relevant arrhythmias within 24 hours after reperfusion, the need for inotropic support, time to detubation, duration of stay in the intensive-care unit, and postoperative use of insulin. This study is registered with ClinicalTrials.gov, number NCT01438723. FINDINGS: Between Nov 8, 2011, and Nov 22, 2013, we randomly assigned 111 patients to treatment (57 to metformin and 54 to placebo). Five patients dropped out from the metformin group, and six from the placebo group. 52 patients in the metformin group and 48 patients in the placebo group were included in the per-protocol analysis. Geometric mean high-sensitivity troponin I increased from 0 µg/L to 3·67 µg/L (95% CI 3·06-4·41) with metformin and to 3·32 µg/L (2·75-4·01) with placebo at 6 h after reperfusion; 2·84 µg/L (2·37-3·41) and 2·45 µg/L (2·02-2·96), respectively, at 12 h; and to 1·77 µg/L (1·47-2·12) and 1·60 µg/L (1·32-1·94) at 24 h. The concentrations did not differ significantly between the groups (difference 12·3% for all timepoints [95% CI -12·4 to 44·1] p=0·35). Occurrence of arrhythmias did not differ between groups (three [5·8%] of 52 patients who received metformin vs three [6·3%] of 48 patients who received placebo; p=1·00). There was no difference between groups in the need for inotropic support, time to detubation, duration of stay in the intensive-care unit, or postoperative use of insulin. No patients died within 30 days after surgery. Occurrence of gastrointestinal discomfort (mostly diarrhoea) was significantly higher with metformin than with placebo (11 [21·2%] of 52 vs two [4·2%] of 48 patients; p=0·01). INTERPRETATION: Short-term metformin pretreatment, although safe, does not seem to be an effective strategy to reduce periprocedural myocardial injury in patients without diabetes undergoing CABG surgery. FUNDING: Netherlands Organisation for Health Research and Development and Netherlands Heart Foundation.


Asunto(s)
Puente de Arteria Coronaria/efectos adversos , Lesiones Cardíacas/prevención & control , Hipoglucemiantes/uso terapéutico , Complicaciones Intraoperatorias/tratamiento farmacológico , Metformina/uso terapéutico , Anciano , Método Doble Ciego , Femenino , Corazón/efectos de los fármacos , Corazón/fisiopatología , Lesiones Cardíacas/complicaciones , Humanos , Hipoglucemiantes/administración & dosificación , Masculino , Metformina/administración & dosificación , Persona de Mediana Edad , Resultado del Tratamiento
20.
Br J Pharmacol ; 171(8): 2067-79, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24032601

RESUMEN

Mitochondrially bound hexokinase II (mtHKII) has long been known to confer cancer cells with their resilience against cell death. More recently, mtHKII has emerged as a powerful protector against cardiac cell death. mtHKII protects against ischaemia-reperfusion (IR) injury in skeletal muscle and heart, attenuates cardiac hypertrophy and remodelling, and is one of the major end-effectors through which ischaemic preconditioning protects against myocardial IR injury. Mechanisms of mtHKII cardioprotection against reperfusion injury entail the maintenance of regulated outer mitochondrial membrane (OMM) permeability during ischaemia and reperfusion resulting in stabilization of mitochondrial membrane potential, the prevention of OMM breakage and cytochrome C release, and reduced reactive oxygen species production. Increasing mtHK may also have important metabolic consequences, such as improvement of glucose-induced insulin release, prevention of acidosis through enhanced coupling of glycolysis and glucose oxidation, and inhibition of fatty acid oxidation. Deficiencies in expression and distorted cellular signalling of HKII may contribute to the altered sensitivity of diabetes to cardiac ischaemic diseases. The interaction of HKII with the mitochondrion constitutes a powerful endogenous molecular mechanism to protect against cell death in almost all cell types examined (neurons, tumours, kidney, lung, skeletal muscle, heart). The challenge now is to harness mtHKII in the treatment of infarction, stroke, elective surgery and transplantation. Remote ischaemic preconditioning, metformin administration and miR-155/miR-144 manipulations are potential means of doing just that.


Asunto(s)
Cardiotónicos/uso terapéutico , Metabolismo Energético/efectos de los fármacos , Hexoquinasa/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Terapia Molecular Dirigida/métodos , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Cardiotónicos/efectos adversos , Cardiotónicos/farmacología , Cardiopatías/tratamiento farmacológico , Cardiopatías/enzimología , Cardiopatías/fisiopatología , Hexoquinasa/metabolismo , Hexoquinasa/fisiología , Humanos , Mitocondrias/enzimología , Mitocondrias/metabolismo , Daño por Reperfusión Miocárdica/enzimología , Neoplasias/enzimología , Neoplasias/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA