Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Neuroinflammation ; 21(1): 183, 2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39069631

RESUMEN

Therapeutics for traumatic brains injuries constitute a global unmet medical need. Despite the advances in neurocritical care, which have dramatically improved the survival rate for the ~ 70 million patients annually, few treatments have been developed to counter the long-term neuroinflammatory processes and accompanying cognitive impairments, frequent among patients. This review looks at gene delivery as a potential therapeutic development avenue for traumatic brain injury. We discuss the capacity of gene delivery to function in traumatic brain injury, by producing beneficial biologics within the brain. Gene delivery modalities, promising vectors and key delivery routes are discussed, along with the pathways that biological cargos could target to improve long-term outcomes for patients. Coupling blood-brain barrier crossing with sustained local production, gene delivery has the potential to convert proteins with useful biological properties, but poor pharmacodynamics, into effective therapeutics. Finally, we review the limitations and health economics of traumatic brain injury, and whether future gene delivery approaches will be viable for patients and health care systems.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Técnicas de Transferencia de Gen , Terapia Genética , Humanos , Lesiones Traumáticas del Encéfalo/terapia , Lesiones Traumáticas del Encéfalo/genética , Técnicas de Transferencia de Gen/tendencias , Animales , Terapia Genética/métodos , Terapia Genética/tendencias , Barrera Hematoencefálica/metabolismo
2.
J Immunol ; 207(1): 90-100, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34145056

RESUMEN

Most of the variation in outcome following severe traumatic brain injury (TBI) remains unexplained by currently recognized prognostic factors. Neuroinflammation may account for some of this difference. We hypothesized that TBI generated variable autoantibody responses between individuals that would contribute to outcome. We developed a custom protein microarray to detect autoantibodies to both CNS and systemic Ags in serum from the acute-phase (the first 7 d), late (6-12 mo), and long-term (6-13 y) intervals after TBI in human patients. We identified two distinct patterns of immune response to TBI. The first was a broad response to the majority of Ags tested, predominantly IgM mediated in the acute phase, then IgG dominant at late and long-term time points. The second was responses to specific Ags, most frequently myelin-associated glycopeptide (MAG), which persisted for several months post-TBI but then subsequently resolved. Exploratory analyses suggested that patients with a greater acute IgM response experienced worse outcomes than predicted from current known risk factors, suggesting a direct or indirect role in worsening outcome. Furthermore, late persistence of anti-MAG IgM autoantibodies correlated with raised serum neurofilament light concentrations at these time points, suggesting an association with ongoing neurodegeneration over the first year postinjury. Our results show that autoantibody production occurs in some individuals following TBI, can persist for many years, and is associated with worse patient outcome. The complexity of responses means that conventional approaches based on measuring responses to single antigenic targets may be misleading.


Asunto(s)
Autoanticuerpos/inmunología , Lesiones Traumáticas del Encéfalo/inmunología , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
3.
Brain ; 145(11): 4097-4107, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36065116

RESUMEN

COVID-19 is associated with neurological complications including stroke, delirium and encephalitis. Furthermore, a post-viral syndrome dominated by neuropsychiatric symptoms is common, and is seemingly unrelated to COVID-19 severity. The true frequency and underlying mechanisms of neurological injury are unknown, but exaggerated host inflammatory responses appear to be a key driver of COVID-19 severity. We investigated the dynamics of, and relationship between, serum markers of brain injury [neurofilament light (NfL), glial fibrillary acidic protein (GFAP) and total tau] and markers of dysregulated host response (autoantibody production and cytokine profiles) in 175 patients admitted with COVID-19 and 45 patients with influenza. During hospitalization, sera from patients with COVID-19 demonstrated elevations of NfL and GFAP in a severity-dependent manner, with evidence of ongoing active brain injury at follow-up 4 months later. These biomarkers were associated with elevations of pro-inflammatory cytokines and the presence of autoantibodies to a large number of different antigens. Autoantibodies were commonly seen against lung surfactant proteins but also brain proteins such as myelin associated glycoprotein. Commensurate findings were seen in the influenza cohort. A distinct process characterized by elevation of serum total tau was seen in patients at follow-up, which appeared to be independent of initial disease severity and was not associated with dysregulated immune responses unlike NfL and GFAP. These results demonstrate that brain injury is a common consequence of both COVID-19 and influenza, and is therefore likely to be a feature of severe viral infection more broadly. The brain injury occurs in the context of dysregulation of both innate and adaptive immune responses, with no single pathogenic mechanism clearly responsible.


Asunto(s)
Lesiones Encefálicas , COVID-19 , Gripe Humana , Humanos , Proteínas de Neurofilamentos , COVID-19/complicaciones , Biomarcadores , Autoanticuerpos , Inmunidad
4.
Int J Mol Sci ; 23(19)2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36232495

RESUMEN

Head trauma is the most common cause of disability in young adults. Known as a silent epidemic, it can cause a mosaic of symptoms, whether neurological (sensory-motor deficits), psychiatric (depressive and anxiety symptoms), or somatic (vertigo, tinnitus, phosphenes). Furthermore, cranial trauma (CT) in children presents several particularities in terms of epidemiology, mechanism, and physiopathology-notably linked to the attack of an immature organ. As in adults, head trauma in children can have lifelong repercussions and can cause social and family isolation, difficulties at school, and, later, socio-professional adversity. Improving management of the pre-hospital and rehabilitation course of these patients reduces secondary morbidity and mortality, but often not without long-term disability. One hypothesized contributor to this process is chronic neuroinflammation, which could accompany primary lesions and facilitate their development into tertiary lesions. Neuroinflammation is a complex process involving different actors such as glial cells (astrocytes, microglia, oligodendrocytes), the permeability of the blood-brain barrier, excitotoxicity, production of oxygen derivatives, cytokine release, tissue damage, and neuronal death. Several studies have investigated the effect of various treatments on the neuroinflammatory response in traumatic brain injury in vitro and in animal and human models. The aim of this review is to examine the various anti-inflammatory therapies that have been implemented.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Inflamación , Animales , Encéfalo/patología , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/patología , Niño , Citocinas/farmacología , Modelos Animales de Enfermedad , Humanos , Inflamación/complicaciones , Microglía , Oxígeno/farmacología
5.
Neurocrit Care ; 32(3): 667-671, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32346843

RESUMEN

The magnitude of the COVID-19 pandemic will result in substantial neurological disease, whether through direct infection (rare), para-infectious complications (less rare), or critical illness more generally (common). Here, we raise the importance of stringent diagnosis and data collection regarding neurological complications of COVID-19; we urge caution in the over-diagnosis of neurological disease where it does not exist, but equally strongly encourage the concerted surveillance for such conditions. Additional to the direct neurological complications of COVID-19 infection, neurological patients are at risk of harm from both structural limitations (such as number of intensive care beds), and a hesitancy to treat with certain necessary medications given risk of nosocomial COVID-19 infection. We therefore also outline the specific management of patients with neuroinflammatory diseases in the context of the pandemic. This article describes the implications of COVID-19 on neurological disease and advertises the Neurocritical Care Society's international data collection collaborative that seeks to align data elements.


Asunto(s)
Infecciones por Coronavirus/fisiopatología , Enfermedades del Sistema Nervioso/fisiopatología , Neumonía Viral/fisiopatología , Betacoronavirus , COVID-19 , Disfunción Cognitiva/etiología , Infecciones por Coronavirus/complicaciones , Cuidados Críticos , Enfermedad Crítica , Infección Hospitalaria/prevención & control , Recolección de Datos , Encefalomielitis Aguda Diseminada/etiología , Síndrome de Guillain-Barré/etiología , Humanos , Inmunosupresores/efectos adversos , Control de Infecciones , Cooperación Internacional , Mielitis Transversa/etiología , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Enfermedades del Sistema Nervioso/etiología , Pandemias , Neumonía Viral/complicaciones , SARS-CoV-2
6.
J Neurotrauma ; 41(1-2): 3-12, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37376743

RESUMEN

Abstract Neuroinflammation is a significant and modifiable cause of secondary injury after traumatic brain injury (TBI), driven by both central and peripheral immune responses. A substantial proportion of outcome after TBI is genetically mediated, with an estimated heritability effect of around 26%, but because of the comparatively small datasets currently available, the individual drivers of this genetic effect have not been well delineated. A hypothesis-driven approach to analyzing genome-wide association study (GWAS) datasets reduces the burden of multiplicity testing and allows variants with a high prior biological probability of effect to be identified where sample size is insufficient to withstand data-driven approaches. Adaptive immune responses show substantial genetically mediated heterogeneity and are well established as a genetic source of risk for numerous disease states; importantly, HLA class II has been specifically identified as a locus of interest in the largest TBI GWAS study to date, highlighting the importance of genetic variance in adaptive immune responses after TBI. In this review article we identify and discuss adaptive immune system genes that are known to confer strong risk effects for human disease, with the dual intentions of drawing attention to this area of immunobiology, which, despite its importance to the field, remains under-investigated in TBI and presenting high-yield testable hypotheses for application to TBI GWAS datasets.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Estudio de Asociación del Genoma Completo , Humanos , Lesiones Traumáticas del Encéfalo/complicaciones , Inmunidad
7.
Front Immunol ; 15: 1425488, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39086484

RESUMEN

As the dimensionality, throughput and complexity of cytometry data increases, so does the demand for user-friendly, interactive analysis tools that leverage high-performance machine learning frameworks. Here we introduce FlowAtlas: an interactive web application that enables dimensionality reduction of cytometry data without down-sampling and that is compatible with datasets stained with non-identical panels. FlowAtlas bridges the user-friendly environment of FlowJo and computational tools in Julia developed by the scientific machine learning community, eliminating the need for coding and bioinformatics expertise. New population discovery and detection of rare populations in FlowAtlas is intuitive and rapid. We demonstrate the capabilities of FlowAtlas using a human multi-tissue, multi-donor immune cell dataset, highlighting key immunological findings. FlowAtlas is available at https://github.com/gszep/FlowAtlas.jl.git.


Asunto(s)
Biología Computacional , Citometría de Flujo , Inmunofenotipificación , Programas Informáticos , Humanos , Inmunofenotipificación/métodos , Citometría de Flujo/métodos , Biología Computacional/métodos , Aprendizaje Automático
8.
Nat Commun ; 14(1): 8487, 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38135686

RESUMEN

To understand neurological complications of COVID-19 better both acutely and for recovery, we measured markers of brain injury, inflammatory mediators, and autoantibodies in 203 hospitalised participants; 111 with acute sera (1-11 days post-admission) and 92 convalescent sera (56 with COVID-19-associated neurological diagnoses). Here we show that compared to 60 uninfected controls, tTau, GFAP, NfL, and UCH-L1 are increased with COVID-19 infection at acute timepoints and NfL and GFAP are significantly higher in participants with neurological complications. Inflammatory mediators (IL-6, IL-12p40, HGF, M-CSF, CCL2, and IL-1RA) are associated with both altered consciousness and markers of brain injury. Autoantibodies are more common in COVID-19 than controls and some (including against MYL7, UCH-L1, and GRIN3B) are more frequent with altered consciousness. Additionally, convalescent participants with neurological complications show elevated GFAP and NfL, unrelated to attenuated systemic inflammatory mediators and to autoantibody responses. Overall, neurological complications of COVID-19 are associated with evidence of neuroglial injury in both acute and late disease and these correlate with dysregulated innate and adaptive immune responses acutely.


Asunto(s)
Lesiones Encefálicas , COVID-19 , Humanos , Estudios de Seguimiento , Citocinas , COVID-19/complicaciones , Sueroterapia para COVID-19 , Autoanticuerpos , Mediadores de Inflamación , Biomarcadores , Proteína Ácida Fibrilar de la Glía
9.
Ann Clin Transl Neurol ; 9(10): 1626-1642, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36116011

RESUMEN

OBJECTIVE: In multiple sclerosis chronic demyelination is associated with axonal loss, and ultimately contributes to irreversible progressive disability. Enhancing remyelination may slow, or even reverse, disability. We recently trialled bexarotene versus placebo in 49 people with multiple sclerosis. While the primary MRI outcome was negative, there was converging neurophysiological and MRI evidence of efficacy. Multiple factors influence lesion remyelination. In this study we undertook a systematic exploratory analysis to determine whether treatment response - measured by change in magnetisation transfer ratio - is influenced by location (tissue type and proximity to CSF) or the degree of abnormality (using baseline magnetisation transfer ratio and T1 values). METHODS: We examined treatment effects at the whole lesion level, the lesion component level (core, rim and perilesional tissues) and at the individual lesion voxel level. RESULTS: At the whole lesion level, significant treatment effects were seen in GM but not WM lesions. Voxel-level analyses detected significant treatment effects in WM lesion voxels with the lowest baseline MTR, and uncovered gradients of treatment effect in both WM and CGM lesional voxels, suggesting that treatment effects were lower near CSF spaces. Finally, larger treatment effects were seen in the outer and surrounding components of GM lesions compared to inner cores. INTERPRETATION: Remyelination varies markedly within and between lesions. The greater remyelinating effect in GM lesions is congruent with neuropathological observations. For future remyelination trials, whole GM lesion measures require less complex post-processing compared to WM lesions (which require voxel level analyses) and markedly reduce sample sizes.


Asunto(s)
Esclerosis Múltiple , Remielinización , Bexaroteno/farmacología , Encéfalo/patología , Humanos , Imagen por Resonancia Magnética , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/patología
10.
Brain Commun ; 4(2): fcac036, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35350551

RESUMEN

Traumatic brain injury is increasingly common in older individuals. Older age is one of the strongest predictors for poor prognosis after brain trauma, a phenomenon driven by the presence of extra-cranial comorbidities as well as pre-existent pathologies associated with cognitive impairment and brain volume loss (such as cerebrovascular disease or age-related neurodegeneration). Furthermore, ageing is associated with a dysregulated immune response, which includes attenuated responses to infection and vaccination, and a failure to resolve inflammation leading to chronic inflammatory states. In traumatic brain injury, where the immune response is imperative for the clearance of cellular debris and survey of the injured milieu, an appropriate self-limiting response is vital to promote recovery. Currently, our understanding of age-related factors that contribute to the outcome is limited; but a more complete understanding is essential for the development of tailored therapeutic strategies to mitigate the consequences of traumatic brain injury. Here we show greater functional deficits, white matter abnormalities and worse long-term outcomes in aged compared with young C57BL/6J mice after either moderate or severe traumatic brain injury. These effects are associated with altered systemic, meningeal and brain tissue immune response. Importantly, the impaired acute systemic immune response in the mice was similar to the findings observed in our clinical cohort. Traumatic brain-injured patient cohort over 70 years of age showed lower monocyte and lymphocyte counts compared with those under 45 years. In mice, traumatic brain injury was associated with alterations in peripheral immune subsets, which differed in aged compared with adult mice. There was a significant increase in transcription of immune and inflammatory genes in the meninges post-traumatic brain injury, including monocyte/leucocyte-recruiting chemokines. Immune cells were recruited to the region of the dural injury, with a significantly higher number of CD11b+ myeloid cells in aged compared with the adult mice. In brain tissue, when compared with the young adult mice, we observed a more pronounced and widespread reactive astrogliosis 1 month after trauma in aged mice, sustained by an early and persistent induction of proinflammatory astrocytic state. These findings provide important insights regarding age-related exacerbation of neurological damage after brain trauma.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA