Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nucleic Acids Res ; 45(4): 1879-1888, 2017 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-27923995

RESUMEN

RAD52 is a homologous recombination (HR) protein that is conserved from bacteriophage to humans. Simultaneously attenuating expression of both the RAD52 gene, and the HR and tumor suppressor gene, BRCA2, in human cells synergistically reduces HR - indicating that RAD52 and BRCA2 control independent mechanisms of HR. We have expressed the human RAD52 gene (HsRAD52) in budding yeast strains lacking the endogenous RAD52 gene and found that HsRAD52 supports repair of DNA double-strand breaks (DSB) by a mechanism of HR that conserves genome structure. Importantly, this mechanism of HR is independent of RAD51, which encodes the central strand exchange protein in yeast required for conservative HR. In contrast, BRCA2 exerts its effect on HR in human cells together with HsRAD51, potentially explaining the synergistic effect of attenuating the expression of both HsRAD52 and BRCA2. This suggests that multiple mechanisms of conservative DSB repair may contribute to tumor suppression in human cells.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Recombinación Homóloga , Recombinasa Rad51/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/genética , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Saccharomycetales/genética , Inmunoprecipitación de Cromatina , Expresión Génica Ectópica , Humanos , Inmunoprecipitación , Mutación , Unión Proteica , Mapeo de Interacción de Proteínas , Tolerancia a Radiación/genética , Radiación Ionizante , Saccharomycetales/metabolismo , Saccharomycetales/efectos de la radiación , Técnicas del Sistema de Dos Híbridos
2.
Ann Bot ; 118(2): 281-303, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27373539

RESUMEN

BACKGROUND AND AIMS: Poa subgenus Poa supersect. Homalopoa has diversified extensively in the Americas. Over half of the species in the supersection are diclinous; most of these are from the New World, while a few are from South-East Asia. Diclinism in Homalopoa can be divided into three main types: gynomonoecism, gynodioecism and dioecism. Here the sampling of species of New World Homalopoa is expanded to date its origin and diversification in North and South America and examine the evolution and origin of the breeding system diversity. METHODS: A total of 124 specimens were included in the matrix, of which 89 are species of Poa supersect. Homalopoa sections Acutifoliae, Anthochloa, Brizoides, Dasypoa, Dioicopoa, Dissanthelium, Homalopoa sensu lato (s.l.), Madropoa and Tovarochloa, and the informal Punapoa group. Bayesian and parsimony analyses were conducted on the data sets based on four markers: the nuclear ribosomal internal tanscribed spacer (ITS) and external transcribed spacer (ETS), and plastid trnT-L and trnL-F. Dating analyses were performed on a reduced Poa matrix and enlarged Poaceae outgroup to utilize fossils as calibration points. A relaxed Bayesian molecular clock method was used. KEY RESULTS: Hermaphroditism appears to be pleisiomorphic in the monophyletic Poa supersect. Homalopoa, which is suggested to have originated in Eurasia 8·4-4·2 million years ago (Mya). The ancestor of Poa supersect. Homalopoa radiated throughout the New World in the Late Miocene-Early Pliocene, with major lineages originating during the Pliocene to Pleistocene (5-2 Mya). Breeding systems are linked to geographic areas, showing an evolutionary pattern associated with different habitats. At least three major pathways from hermaphroditism to diclinism are inferred in New World Homalopoa: two leading to dioecism, one via gynodioecism in South America and another directly from hermaphroditism in North America, a result that needs to be checked with a broader sampling of diclinous species in North America. A third pathway leads from hermaphroditism to gynomonoecism in Andean species of South America, with strictly pistillate species evolving in the highest altitudes. CONCLUSIONS: Divergence dating provides a temporal context to the evolution of breeding systems in New World Poa supersect. Homalopoa The results are consistent with the infrageneric classification in part; monophyletic sections are confirmed, it is proposed to reclassify species of sect. Acutifoliae, Dasypoa and Homalopoa s.l. and it is acknowledged that revision of the infrageneric taxonomy of the gynomonoecious species is needed.


Asunto(s)
Fitomejoramiento , Poa/genética , Poaceae/genética , Teorema de Bayes , Evolución Biológica , ADN de Plantas/química , ADN de Plantas/genética , ADN Espaciador Ribosómico/química , ADN Espaciador Ribosómico/genética , Flores/clasificación , Flores/genética , Fósiles , América del Norte , Filogenia , Plastidios/genética , Poa/clasificación , Poaceae/clasificación , Análisis de Secuencia de ADN , América del Sur
3.
PLoS Genet ; 5(10): e1000701, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19851454

RESUMEN

The methionine salvage pathway is responsible for regenerating methionine from its derivative, methylthioadenosine. The complete set of enzymes of the methionine pathway has been previously described in bacteria. Despite its importance, the pathway has only been fully described in one eukaryotic organism, yeast. Here we use a computational approach to identify the enzymes of the methionine salvage pathway in another eukaryote, Tetrahymena thermophila. In this organism, the pathway has two fused genes, MTNAK and MTNBD. Each of these fusions involves two different genes whose products catalyze two different single steps of the pathway in other organisms. One of the fusion proteins, mtnBD, is formed by enzymes that catalyze non-consecutive steps in the pathway, mtnB and mtnD. Interestingly the gene that codes for the intervening enzyme in the pathway, mtnC, is missing from the genome of Tetrahymena. We used complementation tests in yeast to show that the fusion of mtnB and mtnD from Tetrahymena is able to do in one step what yeast does in three, since it can rescue yeast knockouts of mtnB, mtnC, or mtnD. Fusion genes have proved to be very useful in aiding phylogenetic reconstructions and in the functional characterization of genes. Our results highlight another characteristic of fusion proteins, namely that these proteins can serve as biochemical shortcuts, allowing organisms to completely bypass steps in biochemical pathways.


Asunto(s)
Vías Biosintéticas , Fusión Génica , Metionina/biosíntesis , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Tetrahymena thermophila/enzimología , Animales , Catálisis , Proteínas Protozoarias/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Tetrahymena thermophila/química , Tetrahymena thermophila/genética , Tetrahymena thermophila/metabolismo
4.
Mol Phylogenet Evol ; 48(3): 1106-19, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18599319

RESUMEN

Phylogeny reconstruction is challenging when branch lengths vary and when different genetic loci show conflicting signals. The number of DNA sequence characters required to obtain robust support for all the nodes in a phylogeny becomes greater with denser taxon sampling. We test the usefulness of an approach mixing densely sampled, variable non-coding sequences (trnL-F; rpl16; atpB-rbcL; ITS) with sparsely sampled, more conservative protein coding and ribosomal sequences (matK; ndhF; rbcL; 26S), for the grass subfamily Danthonioideae. Previous phylogenetic studies of Danthonioideae revealed extensive generic paraphyly, but were often impeded by insufficient character and taxon sampling and apparent inter-gene conflict. Our variably-sampled supermatrix approach allowed us to represent 79% of the species with up to c. 9900 base pairs for taxa representing the major clades. A 'taxon duplication' approach for taxa with conflicting phylogenetic signals allowed us to combine the data whilst representing the differences between chloroplast and nuclear encoded gene trees. This approach efficiently improves resolution and support whilst maximising representation of taxa and their sometimes composite evolutionary histories, resulting in a phylogeny of the Danthonioideae that will be useful both for a wide range of evolutionary studies and to inform forthcoming realignment of generic delimitations in the subfamily.


Asunto(s)
Poaceae/genética , Teorema de Bayes , Núcleo Celular/metabolismo , Cartilla de ADN/química , ADN de Cloroplastos/genética , ADN de Plantas/genética , Evolución Molecular , Genes de Plantas , Variación Genética , Modelos Genéticos , Filogenia , Reacción en Cadena de la Polimerasa , Especificidad de la Especie
5.
Mycologia ; 110(4): 654-665, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30130455

RESUMEN

The Andean Puna is an arid, high-elevation plateau in which plants such as grasses experience high abiotic stress and distinctive environmental conditions. We assessed colonization by arbuscular mycorrhizal fungi (AMF) and dark septate endophytes (DSE) in the roots of 20 native grass species and examined the relationship between root-associated fungi (AMF and DSE) as a function of the elevation of study sites, the photosynthetic pathways of the grass hosts, and the hosts' life cycles. In general, grasses were co-colonized by AMF and DSE and the colonization by AMF and DSE was not extensive. The extension of colonization of AMF and that of DSE were positively correlated, as were number of arbuscules and DSE colonization extension. The extension of AMF colonization differed among sites with different elevations, but DSE colonization was similar across sites. Overall, AMF and DSE patterns shifted as a function of elevation in most grass species, with no general trends observed with respect to host photosynthetic pathway or life cycle. In general, our observations differ from previous studies in the Northern Hemisphere. Variation among sites in AMF and DSE colonization was greater than variation that could be explained by the other factors considered here, suggesting a strong influence of environmental factors. We predict that both AMF and DSE may have established synergistic and beneficial associations with grasses in these distinctive and harsh ecosystems.


Asunto(s)
Endófitos/aislamiento & purificación , Interacciones Microbiota-Huesped , Micorrizas/aislamiento & purificación , Poaceae/microbiología , Argentina , Ecosistema , Endófitos/fisiología , Micorrizas/fisiología , Micorrizas/ultraestructura , Fotosíntesis/fisiología , Filogenia , Raíces de Plantas/microbiología , Plantas/anatomía & histología , Plantas/microbiología , Microbiología del Suelo
6.
FEMS Microbiol Ecol ; 81(2): 455-66, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22452587

RESUMEN

The relationships of altitude, host life cycle (annual or perennial) and photosynthetic pathway (C(3) or C(4) ) with arbuscular mycorrhiza (AM) root colonization were analysed in 35 species of Andean grasses. The study area is located in north-western Argentina along altitudinal sites within the Puna biogeographical region. Twenty-one sites from 3320 to 4314 m were sampled. Thirty-five grasses were collected, and the AM root colonization was quantified. We used multivariate analyses to test emerging patterns in these species by considering the plant traits and variables of AM colonization. Pearson's correlations were carried out to evaluate the specific relationships between some variables. Most grasses were associated with AM, but the colonization percentages were low in both C(3) and C(4) grasses. Nevertheless, the AM root colonization clearly decreased as the altitude increased. This distinctive pattern among different species was also observed between some of the populations of the same species sampled throughout the sites. An inverse relationship between altitude and AM colonization was found in this Southern Hemisphere Andean system. The effect of altitude on AM colonization seems to be more related to the grasses' photosynthetic pathway than to life cycles. This study represents the first report for this biogeographical region.


Asunto(s)
Altitud , Micorrizas/fisiología , Fotosíntesis , Poaceae/microbiología , Argentina , Raíces de Plantas/microbiología
7.
Genet Mol Biol ; 33(1): 119-24, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21637614

RESUMEN

Alstroemeria L. (Alstroemeriaceae) is an American genus of monocots with two principal distribution centers in Chile and Brazil. In Chile, it is represented by about 32 species, most of them in central Chile, an area known for its high level of endemism. The "complex" Alstroemeriahookeri is endemic to Chile, where it is distributed from the Coquimbo to the Bío-Bío Region. We analyzed the karyotypes of 36 populations of this complex along its natural distribution. Ten metaphases per population were used for chromosome measurements. All analyzed subspecies presented a well defined asymmetric karyotype. The populations of A. hookeri subsp. hookeri collected in the coastal range of the Bío-Bío Region and the populations from the Central Valley of this Region (Pangal del Laja) presented striking morphological differences in the karyotype, mainly on chromosome 3. The population of A. hookeri subsp. recumbens from Pichicuy showed a polymorphism on chromosome 7, which differed from the other analyzed populations of this subspecies. Phenetic analysis suggested that A. hookeri subsp. cummingiana, which showed a more symmetrical karyotype and did not grow in sandy soil, should be alocated to A. cummingiana rather than considered as part of the hookeri complex.

8.
Genet. mol. biol ; Genet. mol. biol;33(1): 119-124, 2010. ilus, mapas, tab
Artículo en Inglés | LILACS | ID: lil-566150

RESUMEN

Alstroemeria L. (Alstroemeriaceae) is an American genus of monocots with two principal distribution centers in Chile and Brazil. In Chile, it is represented by about 32 species, most of them in central Chile, an area known for its high level of endemism. The "complex" Alstroemeria hookeri is endemic to Chile, where it is distributed from the Coquimbo to the Bío-Bío Region. We analyzed the karyotypes of 36 populations of this complex along its natural distribution. Ten metaphases per population were used for chromosome measurements. All analyzed subspecies presented a well defined asymmetric karyotype. The populations of A. hookeri subsp. hookeri collected in the coastal range of the Bío-Bío Region and the populations from the Central Valley of this Region (Pangal del Laja) presented striking morphological differences in the karyotype, mainly on chromosome 3. The population of A. hookeri subsp. recumbens from Pichicuy showed a polymorphism on chromosome 7, which differed from the other analyzed populations of this subspecies. Phenetic analysis suggested that A. hookeri subsp. cummingiana, which showed a more symmetrical karyotype and did not grow in sandy soil, should be alocated to A. cummingiana rather than considered as part of the hookeri complex.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA