Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Langmuir ; 39(30): 10395-10405, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37462925

RESUMEN

Portlandite (calcium hydroxide: CH: Ca(OH)2) suspensions aggregate spontaneously and form percolated fractal aggregate networks when dispersed in water. Consequently, the viscosity and yield stress of portlandite suspensions diverge at low particle loadings, adversely affecting their processability. Even though polycarboxylate ether (PCE)-based comb polyelectrolytes are routinely used to alter the particle dispersion state, water demand, and rheology of similar suspensions (e.g., ordinary portland cement suspensions) that feature a high pH and high ionic strength, their use to control portlandite suspension rheology has not been elucidated. This study combines adsorption isotherms and rheological measurements to elucidate the role of PCE composition (i.e., charge density, side chain length, and grafting density) in controlling the extent of PCE adsorption, particle flocculation, suspension yield stress, and thermal response of portlandite suspensions. We show that longer side-chain PCEs are more effective in affecting suspension viscosity and yield stress, in spite of their lower adsorption saturation limit and fractional adsorption. The superior steric hindrance induced by the longer side chain PCEs results in better efficacy in mitigating particle aggregation even at low dosages. However, when dosed at optimal dosages (i.e., a dosage that induces a dynamically equilibrated dispersion state of particle aggregates), different PCE-dosed portlandite suspensions exhibit identical fractal structuring and rheological behavior regardless of the side chain length. Furthermore, it is shown that the unusual evolution of the rheological response of portlandite suspensions with temperature can be tailored by adjusting the PCE dosage. The ability of PCEs to modulate the rheology of aggregating charged particle suspensions can be generally extended to any colloidal suspension with a strong screening of repulsive electrostatic interactions.

2.
Langmuir ; 36(36): 10811-10821, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32799535

RESUMEN

Temperature is well known to affect the aggregation behavior of colloidal suspensions. This paper elucidates the temperature dependence of the rheology of portlandite (calcium hydroxide: Ca(OH)2) suspensions that feature a high ionic strength and a pH close to the particle's isoelectric point. In contrast to the viscosity of the suspending medium (saturated solution of Ca(OH)2 in water), the viscosity of Ca(OH)2 suspensions is found to increase with elevating temperature. This behavior is shown to arise from the temperature-induced aggregation of polydisperse Ca(OH)2 particulates because of the diminution of electrostatic repulsive forces with increasing temperature. The temperature dependence of the suspension viscosity is further shown to diminish with increasing particle volume fraction as a result of volumetric crowding and the formation of denser fractal structures in the suspension. Significantly, the temperature-dependent rheological response of suspensions is shown to be strongly affected by the suspending medium's properties, including ionic strength and ion valence, which affect aggregation kinetics. These outcomes provide new insights into aggregation processes that affect the temperature-dependent rheology of portlandite-based and similar suspensions that feature strong charge screening behavior.

3.
Soft Matter ; 16(16): 3929-3940, 2020 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-32240280

RESUMEN

The remarkable increase in the flow resistance of dense suspensions can hinder 3D-printing processes on account of flow cessation in the extruder, and filament fragility/rupture following deposition. Understanding the nature of rheological changes that occur is critical to manipulate flow conditions or to dose flow modifiers for 3D-printing. Therefore, this paper elucidates the influences of clay particulates on controlling flow cessation and the shape stability of dense cementing suspensions that typically feature poor printability. A rope coiling method was implemented with varying stand-off distances to probe the buckling stability and tendency to fracture of dense suspensions that undergo stretching and bending during deposition. The contributions of flocculation and short-term percolation due to the kinetics of structure formation to deformation rate were deconvoluted using a stepped isostress method. It is shown that the shear stress indicates a divergence with a power-law scaling when the particle volume fraction approaches the jamming limit; φ → φj ≈ φmax. Such a power-law divergence of the shear stress decreases by a factor of 10 with increasing clay dosage. Such behavior in clay-containing suspensions arises from a decrease in the relative packing fraction (φ/φmax) and the formation of fractally-architected aggregates with stronger interparticle interactions, whose uniform arrangement controls flow cessation in the extruder and suspension homogeneity, thereby imparting greater buckling stability. The outcomes offer new insights for assessing/improving the extrudability and printability behavior during slurry-based 3D-printing process.

4.
Soft Matter ; 16(14): 3425-3435, 2020 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-32196056

RESUMEN

In spite of their high surface charge (zeta potential ζ = +34 mV), aqueous suspensions of portlandite (calcium hydroxide: Ca(OH)2) exhibit a strong tendency to aggregate, and thereby present unstable suspensions. While a variety of commercial dispersants seek to modify the suspension stability and rheology (e.g., yield stress, viscosity), it remains unclear how the performance of electrostatically and/or electrosterically based additives is affected in aqueous environments having either a high ionic strength and/or a pH close to the particle's isoelectric point (IEP). We show that the high native ionic strength (pH ≈ 12.6, IEP: pH ≈ 13) of saturated portlandite suspensions strongly screens electrostatic forces (Debye length: κ-1 = 1.2 nm). As a result, coulombic repulsion alone is insufficient to mitigate particle aggregation and affect rheology. However, a longer-range geometrical particle-particle exclusion that arises from electrosteric hindrance caused by the introduction of comb polyelectrolyte dispersants is very effective at altering the rheological properties and fractal structuring of suspensions. As a result, comb-like dispersants that stretch into the solvent reduce the suspension's yield stress by 5× at similar levels of adsorption as compared to linear dispersants, thus enhancing the critical solid loading (i.e., at which jamming occurs) by 1.4×. Significantly, the behavior of diverse dispersants is found to be inherently related to the thickness of the adsorbed polymer layer on particle surfaces. These outcomes inform the design of dispersants for concentrated suspensions that present strong charge screening behavior.

5.
J Phys Chem A ; 121(41): 7835-7845, 2017 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-28942651

RESUMEN

Albite (NaAlSi3O8), a framework silicate of the plagioclase feldspar family and a common constituent of felsic rocks, is often present in the siliceous mineral aggregates that compose concrete. When exposed to radiation (e.g., in the form of neutrons) in nuclear power plants, the crystal structure of albite can undergo significant alterations. These alterations may degrade its chemical durability. Indeed, careful examinations of Ar+-implanted albite carried out using Fourier transform infrared spectroscopy (FTIR) and molecular dynamics simulations show that albite's crystal structure, upon irradiation, undergoes progressive disordering, resulting in an expansion in its molar volume (i.e., a reduction of density) and a reduction in the connectivity of its atomic network. This loss of network connectivity (i.e., rigidity) results in an enhancement of the aqueous dissolution rate of albite-measured using vertical scanning interferometry (VSI) in alkaline environments-by a factor of 20. This enhancement in the dissolution rate (i.e., reduction in chemical durability) of albite following irradiation has significant impacts on the durability of felsic rocks and of concrete containing them upon their exposure to radiation in nuclear power plant (NPP) environments.

6.
Materials (Basel) ; 17(5)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38473450

RESUMEN

The widespread use of carpets in residential and commercial buildings and their relatively short life span result in large volumes of carpet being landfilled. A potential solution to this problem is the use of post-consumer carpet fibers in concrete. To this end, this paper systematically identifies the common fiber types in a typical post-consumer carpet fiber bale and evaluates their durability under exposure to varying levels of alkalinity. The tensile strengths and toughness of the fibers belonging to the nylon and polyethylene terephthalate (PET) families (the dominant fibers in most post-consumer carpets) are reduced by up to 50% following exposure to extreme alkalinity, the reasons for which are determined using spectroscopic and microscopic evaluations. The chloride ion transport resistance of concretes (~40 MPa strength) containing 2.5% carpet fibers by volume (~25 kg of fibers per cubic meter of concrete) is comparable to that of the control mixture, while mortar mixtures containing the same volume fraction of carpet fibers demonstrate negligible enhancement in expansion and loss of strength when exposed to 1 N NaOH. This study shows that moderate-strength concretes (~40 MPa) for conventional building and infrastructure applications can be proportioned using the chosen volume of carpet fibers without an appreciable loss of performance. Consideration of low volume fractions of carpet fibers in low-to-moderate-strength concretes thus provides a sustainable avenue for the use of these otherwise landfilled materials in construction applications.

7.
Materials (Basel) ; 16(15)2023 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-37570192

RESUMEN

This paper analyzes the effect of print layer heights and loading direction on the compressive response of plain and fiber-reinforced (steel or basalt fiber) 3D printed concrete. Slabs with three different layer heights (6, 13, and 20 mm) are printed, and extracted cubes are subjected to compression (i) along the direction of printing, (ii) along the direction of layer build-up, and (iii) perpendicular to the above two directions. Digital image correlation (DIC) is used as a non-contact means to acquire the strain profiles. While the 3D printed specimens show lower strengths, as compared to cast specimens, when tested in all three directions, this effect can be reduced through the use of fiber reinforcement. Peak stress and peak strain-based anisotropy coefficients, which are linearly related, are used to characterize and quantify the directional dependence of peak stress and strain. Interface-parallel cracking is found to be the major failure mechanism, and anisotropy coefficients increase with an increase in layer height, which is attributable to the increasing significance of interfacial defects. Thus, orienting the weaker interfaces appropriately, through changes in printing direction, or strengthening them through material modifications (such as fiber reinforcement) or process changes (lower layer height, enables attainment of near-isotropy in 3D printed concrete elements.

8.
RSC Adv ; 11(3): 1762-1772, 2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-35424115

RESUMEN

Calcium hydroxide (Ca(OH)2), a commodity chemical, finds use in diverse industries ranging from food, to environmental remediation and construction. However, the current thermal process of Ca(OH)2 production via limestone calcination is energy- and CO2-intensive. Herein, we demonstrate a novel aqueous-phase calcination-free process to precipitate Ca(OH)2 from saturated solutions at sub-boiling temperatures in three steps. First, calcium was extracted from an archetypal alkaline industrial waste, a steel slag, to produce an alkaline leachate. Second, the leachate was concentrated using reverse osmosis (RO) processing. This elevated the Ca-abundance in the leachate to a level approaching Ca(OH)2 saturation at ambient temperature. Thereafter, Ca(OH)2 was precipitated from the concentrated leachate by forcing a temperature excursion in excess of 65 °C while exploiting the retrograde solubility of Ca(OH)2. This nature of temperature swing can be forced using low-grade waste heat (≤100 °C) as is often available at power generation, and industrial facilities, or using solar thermal heat. Based on a detailed accounting of the mass and energy balances, this new process offers at least ≈65% lower CO2 emissions than incumbent methods of Ca(OH)2, and potentially, cement production.

9.
ACS Appl Mater Interfaces ; 12(49): 55399-55410, 2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33258375

RESUMEN

By focusing the power of sound, acoustic stimulation (i.e., often referred to as sonication) enables numerous "green chemistry" pathways to enhance chemical reaction rates, for instance, of mineral dissolution in aqueous environments. However, a clear understanding of the atomistic mechanism(s) by which acoustic stimulation promotes mineral dissolution remains unclear. Herein, by combining nanoscale observations of dissolving surface topographies using vertical scanning interferometry, quantifications of mineral dissolution rates via analysis of solution compositions using inductively coupled plasma optical emission spectrometry, and classical molecular dynamics simulations, we reveal how acoustic stimulation induces dissolution enhancement. Across a wide range of minerals (Mohs hardness ranging from 3 to 7, surface energy ranging from 0.3 to 7.3 J/m2, and stacking fault energy ranging from 0.8 to 10.0 J/m2), we show that acoustic fields enhance mineral dissolution rates (reactivity) by inducing atomic dislocations and/or atomic bond rupture. The relative contributions of these mechanisms depend on the mineral's underlying mechanical properties. Based on this new understanding, we create a unifying model that comprehensively describes how cavitation and acoustic stimulation processes affect mineral dissolution rates.

10.
Appl Spectrosc ; 71(8): 1795-1807, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28452567

RESUMEN

The use of waste/by-product materials, such as slag or fly ash, activated using alkaline agents to create binding materials for construction applications (in lieu of portland cement) is on the rise. The influence of activation parameters (SiO2 to Na2O ratio or Ms of the activator, Na2O to slag ratio or n, cation type K+ or Na+) on the process and extent of alkali activation of slag under ambient and elevated temperature curing, evaluated through spectroscopic techniques, is reported in this paper. Fourier transform infrared spectroscopy along with a Fourier self-deconvolution method is used. The major spectral band of interest lies in the wavenumber range of ∼950 cm-1, corresponding to the antisymmetric stretching vibration of Si-O-T (T = Si or Al) bonds. The variation in the spectra with time from 6 h to 28 days is attributed to the incorporation of Al in the gel structure and the enhancement in degree of polymerization of the gel. 29Si nuclear magnetic resonance spectroscopy is used to quantify the Al incorporation with time, which is found to be higher when Na silicate is used as the activator. The Si-O-T bond wavenumbers are also generally lower for the Na silicate activated systems.

11.
ACS Appl Mater Interfaces ; 8(51): 35621-35627, 2016 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-27977137

RESUMEN

Water, under conditions of nanoscale confinement, exhibits anomalous dynamics, and enhanced thermal deformations, which may be further enhanced when such water is in contact with hydrophilic surfaces. Such heightened thermal deformations of water could control the volume stability of hydrated materials containing nanoconfined structural water. Understanding and predicting the thermal deformation coefficient (TDC, often referred to as the CTE, coefficient of thermal expansion), which represents volume changes induced in materials under conditions of changing temperature, is of critical importance for hydrated solids including: hydrogels, biological tissues, and calcium silicate hydrates, as changes in their volume can result in stress development, and cracking. By pioneering atomistic simulations, we examine the physical origin of thermal expansion in calcium-silicate-hydrates (C-S-H), the binding agent in concrete that is formed by the reaction of cement with water. We report that the TDC of C-S-H shows a sudden increase when the CaO/SiO2 (molar ratio; abbreviated as Ca/Si) exceeds 1.5. This anomalous behavior arises from a notable increase in the confinement of water contained in the C-S-H's nanostructure. We identify that confinement is dictated by the topology of the C-S-H's atomic network. Taken together, the results suggest that thermal deformations of hydrated silicates can be altered by inducing compositional changes, which in turn alter the atomic topology and the resultant volume stability of the solids.

12.
ACS Appl Mater Interfaces ; 6(11): 8295-304, 2014 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-24840162

RESUMEN

This paper explores, for the first time, the possibility of carbonating waste metallic iron powder to develop sustainable binder systems for concrete. The fundamental premise of this work is that metallic iron will react with aqueous CO2 under controlled conditions to form complex iron carbonates which have binding capabilities. Chosen additives containing silica and alumina are added to facilitate iron dissolution and to obtain beneficial rheological and later-age properties. Water is generally only a medium for mass transfer in these systems thereby making the common reaction schemes in portland cement concretes inapplicable. The compressive and flexural strengths of the chosen iron-based binder systems increase with carbonation duration and the specimens carbonated for 4 days exhibit mechanical properties that are comparable to those of companion ordinary portland cement systems that are most commonly used as the binder in building and infrastructural construction. The influence of the additives, carbonation duration, and the air curing duration after carbonation are explored in detail. Thermogravimetric analysis demonstrate the presence of an organic carbonate complex (the dissolution agent used to dissolve iron is organic), the amount of which increases with carbonation duration. Thermal analysis also confirms the participation of some amount of limestone powder in the reaction product formation. The viability of this binder type for concrete applications is proved in this study.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA