Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Oecologia ; 185(3): 513-524, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28983721

RESUMEN

A dominant paradigm in ecology is that plants are limited by nitrogen (N) during primary succession. Whether generalizable patterns of nutrient limitation are also applicable to metabolically and phylogenetically diverse soil microbial communities, however, is not well understood. We investigated if measures of N and phosphorus (P) pools inform our understanding of the nutrient(s) most limiting to soil microbial community activities during primary succession. We evaluated soil biogeochemical properties and microbial processes using two complementary methodological approaches-a nutrient addition microcosm experiment and extracellular enzyme assays-to assess microbial nutrient limitation across three actively retreating glacial chronosequences. Microbial respiratory responses in the microcosm experiment provided evidence for N, P and N/P co-limitation at Easton Glacier, Washington, USA, Puca Glacier, Peru, and Mendenhall Glacier, Alaska, USA, respectively, and patterns of nutrient limitation generally reflected site-level differences in soil nutrient availability. The activities of three key extracellular enzymes known to vary with soil N and P availability developed in broadly similar ways among sites, increasing with succession and consistently correlating with changes in soil total N pools. Together, our findings demonstrate that during the earliest stages of soil development, microbial nutrient limitation and activity generally reflect soil nutrient supply, a result that is broadly consistent with biogeochemical theory.


Asunto(s)
Ecosistema , Nitrógeno/química , Fósforo/química , Microbiología del Suelo , Suelo/química , Alaska , Alimentos , Cubierta de Hielo , Perú , Filogenia , Washingtón
2.
Ecology ; 97(6): 1543-54, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27459784

RESUMEN

Bacterial community composition and diversity was studied in alpine tundra soils across a plant species and moisture gradient in 20 y-old experimental plots with four nutrient addition regimes (control, nitrogen (N), phosphorus (P) or both nutrients). Different bacterial communities inhabited different alpine meadows, reflecting differences in moisture, nutrients and plant species. Bacterial community alpha-diversity metrics were strongly correlated with plant richness and the production of forbs. After meadow type, N addition proved the strongest determinant of bacterial community structure. Structural Equation Modeling demonstrated that tundra bacterial community responses to N addition occur via changes in plant community composition and soil pH resulting from N inputs, thus disentangling the influence of direct (resource availability) vs. indirect (changes in plant community structure and soil pH) N effects that have remained unexplored in past work examining bacterial responses to long-term N inputs in these vulnerable environments. Across meadow types, the relative influence of these indirect N effects on bacterial community structure varied. In explicitly evaluating the relative importance of direct and indirect effects of long-term N addition on bacterial communities, this study provides new mechanistic understandings of the interaction between plant and microbial community responses to N inputs amidst environmental change.


Asunto(s)
Bacterias/clasificación , Biodiversidad , Nitrógeno , Plantas/clasificación , Microbiología del Suelo , Suelo/química , Fertilizantes , Agua
3.
Oecologia ; 174(1): 283-94, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24022257

RESUMEN

The possible effects of soil microbial community structure on organic matter decomposition rates have been widely acknowledged, but are poorly understood. Understanding these relationships is complicated by the fact that microbial community structure and function are likely to both affect and be affected by organic matter quality and chemistry, thus it is difficult to draw mechanistic conclusions from field studies. We conducted a reciprocal soil inoculum × litter transplant laboratory incubation experiment using samples collected from a set of sites that have similar climate and plant species composition but vary significantly in bacterial community structure and litter quality. The results showed that litter quality explained the majority of variation in decomposition rates under controlled laboratory conditions: over the course of the 162-day incubation, litter quality explained nearly two-thirds (64%) of variation in decomposition rates, and a smaller proportion (25%) was explained by variation in the inoculum type. In addition, the relative importance of inoculum type on soil respiration increased over the course of the experiment, and was significantly higher in microcosms with lower litter quality relative to those with higher quality litter. We also used molecular phylogenetics to examine the relationships between bacterial community composition and soil respiration in samples through time. Pyrosequencing revealed that bacterial community composition explained 32 % of the variation in respiration rates. However, equal portions (i.e., 16%) of the variation in bacterial community composition were explained by inoculum type and litter quality, reflecting the importance of both the meta-community and the environment in bacterial assembly. Taken together, these results indicate that the effects of changing microbial community composition on decomposition are likely to be smaller than the potential effects of climate change and/or litter quality changes in response to increasing atmospheric CO2 concentrations or atmospheric nutrient deposition.


Asunto(s)
Bacterias/metabolismo , Ecosistema , Hojas de la Planta , Microbiología del Suelo , Suelo/química , Bacterias/clasificación , Ciclo del Carbono , Dióxido de Carbono/química , Hawaii , Consorcios Microbianos , Plantas , ARN Ribosómico 16S/genética
4.
Environ Microbiol ; 15(4): 1115-31, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22998505

RESUMEN

The ephemeral stream habitats of the McMurdo Dry Valleys of Antarctica support desiccation and freeze-tolerant microbial mats that are hot spots of primary productivity in an otherwise inhospitable environment. The ecological processes that structure bacterial communities in this harsh environment are not known; however, insights from diatom community ecology may prove to be informative. We examined the relationships between diatoms and bacteria at the community and taxon levels. The diversity and community structure of stream microbial mats were characterized using high-throughput pyrosequencing for bacteria and morphological identification for diatoms. We found significant relationships between diatom communities and the communities of cyanobacteria and heterotrophic bacteria, and co-occurrence analysis identified numerous correlations between the relative abundances of individual diatom and bacterial taxa, which may result from species interactions. Additionally, the strength of correlations between heterotrophic bacteria and diatoms varied along a hydrologic gradient, indicating that flow regime may influence the overall community structure. Phylogenetic consistency in the co-occurrence patterns suggests that the associations are ecologically relevant. Despite these community- and taxon-level relationships, diatom and bacterial alpha diversity were inversely correlated, which may highlight a fundamental difference between the processes that influence bacterial and diatom community assembly in these streams. Our results therefore demonstrate that the relationships between diatoms and bacteria are complex and may result from species interactions as well as niche-specific processes.


Asunto(s)
Bacterias , Biota , Diatomeas , Ecosistema , Ríos , Regiones Antárticas , Bacterias/clasificación , Bacterias/genética , Cianobacterias/clasificación , Cianobacterias/genética , Diatomeas/clasificación , Diatomeas/genética , Ecología , Filogenia , Ríos/microbiología , Ríos/parasitología , Especificidad de la Especie
5.
Glob Chang Biol ; 18(9): 2969-79, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24501071

RESUMEN

Global changes such as variations in plant net primary production are likely to drive shifts in leaf litterfall inputs to forest soils, but the effects of such changes on soil carbon (C) cycling and storage remain largely unknown, especially in C-rich tropical forest ecosystems. We initiated a leaf litterfall manipulation experiment in a tropical rain forest in Costa Rica to test the sensitivity of surface soil C pools and fluxes to different litter inputs. After only 2 years of treatment, doubling litterfall inputs increased surface soil C concentrations by 31%, removing litter from the forest floor drove a 26% reduction over the same time period, and these changes in soil C concentrations were associated with variations in dissolved organic matter fluxes, fine root biomass, microbial biomass, soil moisture, and nutrient fluxes. However, the litter manipulations had only small effects on soil organic C (SOC) chemistry, suggesting that changes in C cycling, nutrient cycling, and microbial processes in response to litter manipulation reflect shifts in the quantity rather than quality of SOC. The manipulation also affected soil CO 2 fluxes; the relative decline in CO 2 production was greater in the litter removal plots (-22%) than the increase in the litter addition plots (+15%). Our analysis showed that variations in CO 2 fluxes were strongly correlated with microbial biomass pools, soil C and nitrogen (N) pools, soil inorganic P fluxes, dissolved organic C fluxes, and fine root biomass. Together, our data suggest that shifts in leaf litter inputs in response to localized human disturbances and global environmental change could have rapid and important consequences for belowground C storage and fluxes in tropical rain forests, and highlight differences between tropical and temperate ecosystems, where belowground C cycling responses to changes in litterfall are generally slower and more subtle.

6.
Ecol Lett ; 14(8): 782-7, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21672121

RESUMEN

One of the oldest ecological hypotheses, proposed by Darwin, suggests that the struggle for existence is stronger between more closely related species. Despite its long history, the validity of this phylogenetic limiting similarity hypothesis has rarely been examined. Here we provided a formal experimental test of the hypothesis using pairs of bacterivorous protist species in a multigenerational experiment. Consistent with the hypothesis, both the frequency and tempo of competitive exclusion, and the reduction in the abundance of inferior competitors, increased with increasing phylogenetic relatedness of the competing species. These results were linked to protist mouth size, a trait potentially related to resource use, exhibiting a significant phylogenetic signal. The likelihood of coexistence, however, was better predicted by phylogenetic relatedness than trait similarity of the competing species. Our results support phylogenetic relatedness as a useful predictor of the outcomes of competitive interactions in ecological communities.


Asunto(s)
Bacterias , Cilióforos/clasificación , Interacciones Microbianas , Biodiversidad , Ecosistema , Filogenia , Dinámica Poblacional
7.
Environ Microbiol ; 13(1): 135-144, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21199253

RESUMEN

Bacteria control major nutrient cycles and directly influence plant, animal and human health. However, we know relatively little about the forces shaping their large-scale ecological ranges. Here, we reveal patterns in the distribution of individual bacterial taxa at multiple levels of phylogenetic resolution within and between Earth's major habitat types. Our analyses suggest that while macro-scale habitats structure bacterial distribution to some degree, abundant bacteria (i.e. detectable using 16S rRNA gene sequencing methods) are confined to single assemblages. Additionally, we show that the most cosmopolitan taxa are also the most abundant in individual assemblages. These results add to the growing body of data that support that the diversity of the overall bacterial metagenome is tremendous. The mechanisms governing microbial distribution remain poorly understood, but our analyses provide a framework with which to test the importance of macro-ecological environmental gradients, relative abundance, neutral processes and the ecological strategies of individual taxa in structuring microbial communities.


Asunto(s)
Bacterias/clasificación , Ecosistema , Metagenoma , Filogenia , Bacterias/genética , Ecología/métodos , Genes Bacterianos , Geografía , ARN Ribosómico 16S/genética , Microbiología del Suelo
8.
Oecologia ; 164(2): 521-31, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20454976

RESUMEN

The role of biodiversity in ecosystem function receives substantial attention, yet despite the diversity and functional relevance of microorganisms, relationships between microbial community structure and ecosystem processes remain largely unknown. We used tropical rain forest fertilization plots to directly compare the relative abundance, composition and diversity of free-living nitrogen (N)-fixer communities to in situ leaf litter N fixation rates. N fixation rates varied greatly within the landscape, and 'hotspots' of high N fixation activity were observed in both control and phosphorus (P)-fertilized plots. Compared with zones of average activity, the N fixation 'hotspots' in unfertilized plots were characterized by marked differences in N-fixer community composition and had substantially higher overall diversity. P additions increased the efficiency of N-fixer communities, resulting in elevated rates of fixation per nifH gene. Furthermore, P fertilization increased N fixation rates and N-fixer abundance, eliminated a highly novel group of N-fixers, and increased N-fixer diversity. Yet the relationships between diversity and function were not simple, and coupling rate measurements to indicators of community structure revealed a biological dynamism not apparent from process measurements alone. Taken together, these data suggest that the rain forest litter layer maintains high N fixation rates and unique N-fixing organisms and that, as observed in plant community ecology, structural shifts in N-fixing communities may partially explain significant differences in system-scale N fixation rates.


Asunto(s)
Bacterias/metabolismo , Biodiversidad , Fijación del Nitrógeno , Rhizobiaceae/metabolismo , Árboles/microbiología , Bacterias/genética , Bacterias/aislamiento & purificación , Costa Rica , Fertilizantes , Fósforo/farmacología , Rhizobiaceae/genética , Rhizobiaceae/aislamiento & purificación , Árboles/genética , Clima Tropical
9.
BMC Genomics ; 9: 261, 2008 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-18513439

RESUMEN

BACKGROUND: Integrons are mechanisms that facilitate horizontal gene transfer, allowing bacteria to integrate and express foreign DNA. These are important in the exchange of antibiotic resistance determinants, but can also transfer a diverse suite of genes unrelated to pathogenicity. Here, we provide a systematic analysis of the distribution and diversity of integron intI genes and integron-containing bacteria. RESULTS: We found integrons in 103 different pathogenic and non-pathogenic bacteria, in six major phyla. Integrons were widely scattered, and their presence was not confined to specific clades within bacterial orders. Nearly 1/3 of the intI genes that we identified were pseudogenes, containing either an internal stop codon or a frameshift mutation that would render the protein product non-functional. Additionally, 20% of bacteria contained more than one integrase gene. dN/dS ratios revealed mutational hotspots in clades of Vibrio and Shewanella intI genes. Finally, we characterized the gene cassettes associated with integrons in Methylobacillus flagellatus KT and Dechloromonas aromatica RCB, and found a heavy metal efflux gene as well as genes involved in protein folding and stability. CONCLUSION: Our analysis suggests that the present distribution of integrons is due to multiple losses and gene transfer events. While, in some cases, the ability to integrate and excise foreign DNA may be selectively advantageous, the gain, loss, or rearrangment of gene cassettes could also be deleterious, selecting against functional integrases. Thus, such a high fraction of pseudogenes may suggest that the selective impact of integrons on genomes is variable, oscillating between beneficial and deleterious, possibly depending on environmental conditions.


Asunto(s)
Bacterias/genética , Evolución Molecular , Genómica , Integrones/genética , Genes Bacterianos , Variación Genética/genética , Genoma Bacteriano/genética , Filogenia , Seudogenes
10.
Environ Microbiol ; 10(11): 3093-105, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18764871

RESUMEN

Many studies have shown that changes in nitrogen (N) availability affect primary productivity in a variety of terrestrial systems, but less is known about the effects of the changing N cycle on soil organic matter (SOM) decomposition. We used a variety of techniques to examine the effects of chronic N amendments on SOM chemistry and microbial community structure and function in an alpine tundra soil. We collected surface soil (0-5 cm) samples from five control and five long-term N-amended plots established and maintained at the Niwot Ridge Long-term Ecological Research (LTER) site. Samples were bulked by treatment and all analyses were conducted on composite samples. The fungal community shifted in response to N amendments, with a decrease in the relative abundance of basidiomycetes. Bacterial community composition also shifted in the fertilized soil, with increases in the relative abundance of sequences related to the Bacteroidetes and Gemmatimonadetes, and decreases in the relative abundance of the Verrucomicrobia. We did not uncover any bacterial sequences that were closely related to known nitrifiers in either soil, but sequences related to archaeal nitrifiers were found in control soils. The ratio of fungi to bacteria did not change in the N-amended soils, but the ratio of archaea to bacteria dropped from 20% to less than 1% in the N-amended plots. Comparisons of aliphatic and aromatic carbon compounds, two broad categories of soil carbon compounds, revealed no between treatment differences. However, G-lignins were found in higher relative abundance in the fertilized soils, while proteins were detected in lower relative abundance. Finally, the activities of two soil enzymes involved in N cycling changed in response to chronic N amendments. These results suggest that chronic N fertilization induces significant shifts in soil carbon dynamics that correspond to shifts in microbial community structure and function.


Asunto(s)
Archaea/clasificación , Bacterias/clasificación , Biodiversidad , Carbono/metabolismo , Fertilizantes , Hongos/clasificación , Nitrógeno/metabolismo , Microbiología del Suelo , Archaea/aislamiento & purificación , Bacterias/aislamiento & purificación , Hongos/aislamiento & purificación , Datos de Secuencia Molecular , Compuestos Orgánicos/análisis , Filogenia , Análisis de Secuencia de ADN , Suelo/análisis
11.
Proc Biol Sci ; 275(1653): 2793-802, 2008 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-18755677

RESUMEN

Global climate change has accelerated the pace of glacial retreat in high-latitude and high-elevation environments, exposing lands that remain devoid of vegetation for many years. The exposure of 'new' soil is particularly apparent at high elevations (5000 metres above sea level) in the Peruvian Andes, where extreme environmental conditions hinder plant colonization. Nonetheless, these seemingly barren soils contain a diverse microbial community; yet the biogeochemical role of micro-organisms at these extreme elevations remains unknown. Using biogeochemical and molecular techniques, we investigated the biological community structure and ecosystem functioning of the pre-plant stages of primary succession in soils along a high-Andean chronosequence. We found that recently glaciated soils were colonized by a diverse community of cyanobacteria during the first 4-5 years following glacial retreat. This significant increase in cyanobacterial diversity corresponded with equally dramatic increases in soil stability, heterotrophic microbial biomass, soil enzyme activity and the presence and abundance of photosynthetic and photoprotective pigments. Furthermore, we found that soil nitrogen-fixation rates increased almost two orders of magnitude during the first 4-5 years of succession, many years before the establishment of mosses, lichens or vascular plants. Carbon analyses (pyrolysis-gas chromatography/mass spectroscopy) of soil organic matter suggested that soil carbon along the chronosequence was of microbial origin. This indicates that inputs of nutrients and organic matter during early ecosystem development at these sites are dominated by microbial carbon and nitrogen fixation. Overall, our results indicate that photosynthetic and nitrogen-fixing bacteria play important roles in acquiring nutrients and facilitating ecological succession in soils near some of the highest elevation receding glaciers on the Earth.


Asunto(s)
Ecosistema , Cubierta de Hielo , Suelo/análisis , Biodiversidad , Cianobacterias/genética , Cianobacterias/fisiología , ADN Bacteriano/química , ADN Ribosómico/química , Geografía , Nitrógeno/análisis , Fijación del Nitrógeno , Perú , Fotosíntesis , Microbiología del Suelo
12.
PeerJ ; 6: e4575, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29632744

RESUMEN

Recent advances have allowed for greater investigation into microbial regulation of mercury toxicity in the environment. In wetlands in particular, dissolved organic matter (DOM) may influence methylmercury (MeHg) production both through chemical interactions and through substrate effects on microbiomes. We conducted microcosm experiments in two disparate wetland environments (oligotrophic unvegetated and high-C vegetated sediments) to examine the impacts of plant leachate and inorganic mercury loadings (20 mg/L HgCl2) on microbiomes and MeHg production in the St. Louis River Estuary. Our research reveals the greater relative capacity for mercury methylation in vegetated over unvegetated sediments. Further, our work shows how mercury cycling in oligotrophic unvegetated sediments may be susceptible to DOM inputs in the St. Louis River Estuary: unvegetated microcosms receiving leachate produced substantially more MeHg than unamended microcosms. We also demonstrate (1) changes in microbiome structure towards Clostridia, (2) metagenomic shifts toward fermentation, and (3) degradation of complex DOM; all of which coincide with elevated net MeHg production in unvegetated microcosms receiving leachate. Together, our work shows the influence of wetland vegetation in controlling MeHg production in the Great Lakes region and provides evidence that this may be due to both enhanced microbial activity as well as differences in microbiome composition.

13.
Sci Adv ; 4(5): eaaq0942, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29806022

RESUMEN

Current models of ecosystem development hold that low nitrogen availability limits the earliest stages of primary succession, but these models were developed from studies conducted in areas with temperate or wet climates. Global warming is now causing rapid glacial retreat even in inland areas with cold, dry climates, areas where ecological succession has not been adequately studied. We combine field and microcosm studies of both plant and microbial primary producers and show that phosphorus, not nitrogen, is the nutrient most limiting to the earliest stages of primary succession along glacial chronosequences in the Central Andes and central Alaska. We also show that phosphorus addition greatly accelerates the rate of succession for plants and for microbial phototrophs, even at the most extreme deglaciating site at over 5000 meters above sea level in the Andes of arid southern Peru. These results challenge the idea that nitrogen availability and a severe climate limit the rate of plant and microbial succession in cold-arid regions and will inform conservation efforts to mitigate the effects of global change on these fragile and threatened ecosystems.


Asunto(s)
Microbiología Ambiental , Cubierta de Hielo , Nitrógeno , Fósforo , Plantas , Ecosistema , Perú
14.
Sci Total Environ ; 615: 1390-1395, 2018 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-29751443

RESUMEN

It was demonstrated more than two decades ago that microorganisms use humic substances, including fulvic acid (FA), as electron shuttles during iron (Fe) reduction in anaerobic soils and sediments. The relevance of this mechanism for the acceleration of Fe(III) reduction in arsenic-laden groundwater environments is gaining wider attention. Here we provide new evidence that dissolved FAs isolated from sediment-influenced surface water and groundwater in the Bengal Basin were capable of electron shuttling between Geobacter metallireducens and Fe(III). Moreover, all four Bangladesh sediment-derived dissolved FAs investigated in this study had higher electron accepting capacity (176 to 245µmol/g) compared to aquatic FAs, such as Suwanee River Fulvic Acid (67µmol/g). Our direct evidence that Bangladesh FAs are capable of intermediate electron transfer to Fe(III) supports other studies that implicate electron shuttling by sediment-derived aqueous humics to enhance Fe reduction and, in turn, As mobility. Overall, the finding of greater electron accepting capacity by dissolved FAs from groundwater and other sediment-influenced environments advances our understanding of mechanisms that control Fe reduction under conditions where electron transfer is the rate limiting step.


Asunto(s)
Arsénico/química , Benzopiranos/química , Compuestos Férricos/metabolismo , Agua Subterránea/química , Microbiología del Agua , Contaminantes Químicos del Agua/química , Arsénico/análisis , Bangladesh , Biodegradación Ambiental , Electrones , Agua Subterránea/microbiología , Contaminantes Químicos del Agua/análisis
15.
ISME J ; 10(5): 1147-56, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26565722

RESUMEN

Trait-based studies can help clarify the mechanisms driving patterns of microbial community assembly and coexistence. Here, we use a trait-based approach to explore the importance of rRNA operon copy number in microbial succession, building on prior evidence that organisms with higher copy numbers respond more rapidly to nutrient inputs. We set flasks of heterotrophic media into the environment and examined bacterial community assembly at seven time points. Communities were arrayed along a geographic gradient to introduce stochasticity via dispersal processes and were analyzed using 16 S rRNA gene pyrosequencing, and rRNA operon copy number was modeled using ancestral trait reconstruction. We found that taxonomic composition was similar between communities at the beginning of the experiment and then diverged through time; as well, phylogenetic clustering within communities decreased over time. The average rRNA operon copy number decreased over the experiment, and variance in rRNA operon copy number was lowest both early and late in succession. We then analyzed bacterial community data from other soil and sediment primary and secondary successional sequences from three markedly different ecosystem types. Our results demonstrate that decreases in average copy number are a consistent feature of communities across various drivers of ecological succession. Importantly, our work supports the scaling of the copy number trait over multiple levels of biological organization, ranging from cells to populations and communities, with implications for both microbial ecology and evolution.


Asunto(s)
Bacterias/genética , Microbiología del Suelo , Operón de ARNr/genética , Colorado , Ecosistema , Dosificación de Gen , Operón , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ARN , Suelo , Procesos Estocásticos
16.
Front Microbiol ; 7: 214, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26941732

RESUMEN

Microorganisms are vital in mediating the earth's biogeochemical cycles; yet, despite our rapidly increasing ability to explore complex environmental microbial communities, the relationship between microbial community structure and ecosystem processes remains poorly understood. Here, we address a fundamental and unanswered question in microbial ecology: 'When do we need to understand microbial community structure to accurately predict function?' We present a statistical analysis investigating the value of environmental data and microbial community structure independently and in combination for explaining rates of carbon and nitrogen cycling processes within 82 global datasets. Environmental variables were the strongest predictors of process rates but left 44% of variation unexplained on average, suggesting the potential for microbial data to increase model accuracy. Although only 29% of our datasets were significantly improved by adding information on microbial community structure, we observed improvement in models of processes mediated by narrow phylogenetic guilds via functional gene data, and conversely, improvement in models of facultative microbial processes via community diversity metrics. Our results also suggest that microbial diversity can strengthen predictions of respiration rates beyond microbial biomass parameters, as 53% of models were improved by incorporating both sets of predictors compared to 35% by microbial biomass alone. Our analysis represents the first comprehensive analysis of research examining links between microbial community structure and ecosystem function. Taken together, our results indicate that a greater understanding of microbial communities informed by ecological principles may enhance our ability to predict ecosystem process rates relative to assessments based on environmental variables and microbial physiology.

17.
Res Microbiol ; 156(7): 775-84, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15922566

RESUMEN

Cultivation-independent molecular phylogenetic techniques are now widely employed to examine environmental microbial diversity; however, the relationship between microbial community structure and ecosystem function is unclear. This review synthesizes cultivation-independent views of microbiological diversity with our current understanding of nutrient dynamics in alpine and arctic soils. Recently, we have begun to explore connections between microbial community structure and function in soils from the alpine Niwot Ridge LTER site in Colorado, USA, whose ecology has been extensively investigated for over 50 years. We examined the diversity of bacterial, eucaryal, and archaeal small subunit rRNA genes in tundra and talus soils across seasons in the alpine. This work has provided support for spatial and seasonal shifts in specific microbial groups, which correlate well with previously documented transitions in microbial processes. In addition, these preliminary results suggest that the physiologies of certain groups of organisms may scale up to the ecosystem level, providing the basis for testable hypotheses about the function of specific microbes in this system. These studies have also expanded on the known diversity of life, as these soils harbor bacterial and eucaryotic lineages that are distantly related to other known organisms. In contrast to the alpine, microbial diversity in the arctic has been little explored; only three published studies have used molecular techniques to examine these soils. Because of the importance of these systems, particularly to the global C cycle, and their vulnerability to current and impending climate change, the microbial diversity of these soils needs to be further investigated.


Asunto(s)
Archaea/clasificación , Bacterias/clasificación , Clima Frío , Ecosistema , Células Eucariotas/clasificación , Hongos/clasificación , Microbiología del Suelo , Archaea/genética , Archaea/aislamiento & purificación , Regiones Árticas , Bacterias/genética , Bacterias/aislamiento & purificación , Biodiversidad , Hongos/genética , Hongos/aislamiento & purificación , Genes de ARNr
18.
ISME J ; 9(8): 1693-9, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25535936

RESUMEN

For any enzyme-catalyzed reaction to occur, the corresponding protein-encoding genes and transcripts are necessary prerequisites. Thus, a positive relationship between the abundance of gene or transcripts and corresponding process rates is often assumed. To test this assumption, we conducted a meta-analysis of the relationships between gene and/or transcript abundances and corresponding process rates. We identified 415 studies that quantified the abundance of genes or transcripts for enzymes involved in carbon or nitrogen cycling. However, in only 59 of these manuscripts did the authors report both gene or transcript abundance and rates of the appropriate process. We found that within studies there was a significant but weak positive relationship between gene abundance and the corresponding process. Correlations were not strengthened by accounting for habitat type, differences among genes or reaction products versus reactants, suggesting that other ecological and methodological factors may affect the strength of this relationship. Our findings highlight the need for fundamental research on the factors that control transcription, translation and enzyme function in natural systems to better link genomic and transcriptomic data to ecosystem processes.


Asunto(s)
Biocatálisis , Dosificación de Gen , Regulación Bacteriana de la Expresión Génica/genética , Transcripción Genética , Carbono/metabolismo , Catálisis , Compensación de Dosificación (Genética) , Ecosistema , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica/fisiología , Nitrógeno/metabolismo
19.
FEMS Microbiol Ecol ; 91(10)2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26371074

RESUMEN

A major goal of microbial ecology is to identify links between microbial community structure and microbial processes. Although this objective seems straightforward, there are conceptual and methodological challenges to designing studies that explicitly evaluate this link. Here, we analyzed literature documenting structure and process responses to manipulations to determine the frequency of structure-process links and whether experimental approaches and techniques influence link detection. We examined nine journals (published 2009-13) and retained 148 experimental studies measuring microbial community structure and processes. Many qualifying papers (112 of 148) documented structure and process responses, but few (38 of 112 papers) reported statistically testing for a link. Of these tested links, 75% were significant and typically used Spearman or Pearson's correlation analysis (68%). No particular approach for characterizing structure or processes was more likely to produce significant links. Process responses were detected earlier on average than responses in structure or both structure and process. Together, our findings suggest that few publications report statistically testing structure-process links. However, when links are tested for they often occur but share few commonalities in the processes or structures that were linked and the techniques used for measuring them.


Asunto(s)
Ecosistema , Consorcios Microbianos/fisiología , Archaea/metabolismo , Bacterias/metabolismo , Hongos/metabolismo
20.
Evolution ; 58(5): 946-55, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15212376

RESUMEN

Theories of macroevolution rarely have been extended to include microbes; however, because microbes represent the most ancient and diverse assemblage of organismal diversity, such oversight limits our understanding of evolutionary history. Our analysis of phylogenetic trees for microbes suggests that macroevolution may differ between prokaryotes and both micro- and macroeukaryotes (mainly plants and animals). Phylogenetic trees inferred for prokaryotes and some microbial eukaryotes conformed to expectations assuming a constant rate of cladogenesis over time and among lineages: nevertheless, microbial eukaryote trees exhibited more variation in rates of cladogenesis than prokaryote trees. We hypothesize that the contrast of macroevolutionary dynamics between prokaryotes and many eukaryotes is due, at least in part, to differences in the prevalence of lateral gene transfer (LGT) between the two groups. Inheritance is predominantly, if not wholly, vertical within eukaryotes, a feature that allows for the emergence and maintenance of heritable variation among lineages. By contrast, frequent LGT in prokaryotes may ameliorate heritable variation in rate of cladogenesis resulting from the emergence of key innovations; thus, the inferred difference in macroevolution might reflect exclusivity of key innovations in eukaryotes and their promiscuous nature in prokaryotes.


Asunto(s)
Archaea/genética , Bacterias/genética , Transferencia de Gen Horizontal/genética , Variación Genética , Filogenia , Microbiología del Suelo , Análisis por Conglomerados , Bases de Datos Genéticas , Ambiente , Geografía , Funciones de Verosimilitud , Modelos Genéticos , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA