Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Sci Rep ; 14(1): 2441, 2024 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-38286816

RESUMEN

Traumatic brain injury (TBI) is a leading cause of mortality and disability worldwide. Acute neuroinflammation is a prominent reaction after TBI and is mostly initiated by brain-resident glial cells such as microglia, NG2-glia and astrocytes. The magnitude of this reaction paves the way for long-lasting consequences such as chronic neurological pathologies, for which therapeutic options remain limited. The neuroinflammatory response to TBI is mostly studied with craniotomy-based animal models that are very robust but also rather artificial. Here, we aimed to analyze the reaction of glial cells in a highly translational but variable closed head injury (CHI) model and were able to correlate the severity of the trauma to the degree of glial response. Furthermore, we could show that the different glial cell types react in a temporally and spatially orchestrated manner in terms of morphological changes, proliferation, and cell numbers in the first 15 days after the lesion. Interestingly, NG2-glia, the only proliferating cells in the healthy brain parenchyma, divided at a rate that was correlated with the size of the injury. Our findings describe the previously uncharacterized posttraumatic response of the major brain glial cell types in CHI in order to gain a detailed understanding of the course of neuroinflammatory events; such knowledge may open novel avenues for future therapeutic approaches in TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Traumatismos Cerrados de la Cabeza , Animales , Neuroglía/metabolismo , Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/patología , Astrocitos/metabolismo , Microglía/metabolismo , Traumatismos Cerrados de la Cabeza/patología , Modelos Animales de Enfermedad
2.
Mol Neurodegener ; 18(1): 24, 2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-37069623

RESUMEN

BACKGROUND: Inflammaging represents an accepted concept where the immune system shifts to a low-grade chronic pro-inflammatory state without overt infection upon aging. In the CNS, inflammaging is mainly driven by glia cells and associated with neurodegenerative processes. White matter degeneration (WMD), a well-known process in the aging brain, manifests in myelin loss finally resulting in motor, sensory and cognitive impairments. Oligodendrocytes (OL) are responsible for homeostasis and maintenance of the myelin sheaths, which is a complex and highly energy demanding process sensitizing these cells to metabolic, oxidative and other forms of stress. Yet, the immediate impact of chronic inflammatory stress like inflammaging on OL homeostasis, myelin maintenance and WMD remains open. METHODS: To functionally analyze the role of IKK/NF-κB signaling in the regulation of myelin homeostasis and maintenance in the adult CNS, we established a conditional mouse model allowing NF-κB activation in mature myelinating oligodendrocytes. IKK2-CAPLP-CreERT2 mice were characterized by biochemical, immunohistochemical, ultrastructural and behavioral analyses. Transcriptome data from isolated, primary OLs and microglia cells were explored by in silico pathway analysis and validated by complementary molecular approaches. RESULTS: Chronic NF-κB activation in mature OLs leads to aggravated neuroinflammatory conditions phenocopying brain inflammaging. As a consequence, IKK2-CAPLP-CreERT2 mice showed specific neurological deficits and impaired motoric learning. Upon aging, persistent NF-κB signaling promotes WMD in these mice as ultrastructural analysis revealed myelination deficits in the corpus callosum accompanied by impaired myelin protein expression. RNA-Seq analysis of primary oligodendrocytes and microglia cells uncovers gene expression signatures associated with activated stress responses and increased post mitotic cellular senescence (PoMiCS) which was confirmed by elevated senescence-associated ß-galactosidase activity and SASP gene expression profile. We identified an elevated integrated stress response (ISR) characterized by phosphorylation of eIF2α as a relevant molecular mechanism which is able to affect translation of myelin proteins. CONCLUSIONS: Our findings demonstrate an essential role of IKK/NF-κB signaling in mature, post-mitotic OLs in regulating stress-induced senescence in these cells. Moreover, our study identifies PoMICS as an important driving force of age-dependent WMD as well as of traumatic brain injury induced myelin defects.


Asunto(s)
FN-kappa B , Sustancia Blanca , Ratones , Animales , FN-kappa B/metabolismo , Sustancia Blanca/metabolismo , Oligodendroglía , Vaina de Mielina , Transducción de Señal/fisiología
3.
Cells ; 10(6)2021 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-34207710

RESUMEN

Dyskinesias are characterized by abnormal repetitive involuntary movements due to dysfunctional neuronal activity. Although levodopa-induced dyskinesia, characterized by tic-like abnormal involuntary movements, has no clinical treatment for Parkinson's disease patients, animal studies indicate that Riluzole, which interferes with glutamatergic neurotransmission, can improve the phenotype. The rat model of Levodopa-Induced Dyskinesia is a unilateral lesion with 6-hydroxydopamine in the medial forebrain bundle, followed by the repeated administration of levodopa. The molecular pathomechanism of Levodopa-Induced Dyskinesia is still not deciphered; however, the implication of epigenetic mechanisms was suggested. In this study, we investigated the striatum for DNA methylation alterations under chronic levodopa treatment with or without co-treatment with Riluzole. Our data show that the lesioned and contralateral striata have nearly identical DNA methylation profiles. Chronic levodopa and levodopa + Riluzole treatments led to DNA methylation loss, particularly outside of promoters, in gene bodies and CpG poor regions. We observed that several genes involved in the Levodopa-Induced Dyskinesia underwent methylation changes. Furthermore, the Riluzole co-treatment, which improved the phenotype, pinpointed specific methylation targets, with a more than 20% methylation difference relative to levodopa treatment alone. These findings indicate potential new druggable targets for Levodopa-Induced Dyskinesia.


Asunto(s)
Cuerpo Estriado , Metilación de ADN/efectos de los fármacos , Discinesia Inducida por Medicamentos/tratamiento farmacológico , Levodopa/toxicidad , Riluzol , Animales , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Ratas , Ratas Wistar , Riluzol/farmacología , Riluzol/uso terapéutico
4.
Front Neurol ; 11: 649, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32754111

RESUMEN

The hydrogen sulfide (H2S) and the oxytocin/oxytocin receptor (OT/OTR) systems interact in trauma and are implicated in vascular protection and regulation of fluid homeostasis. Acute brain injury is associated with pressure-induced edema formation, blood brain barrier disruption, and neuro-inflammation. The similarities in brain anatomy: size, gyrencephalic organization, skull structure, may render the pig a highly relevant model for translational medicine. Cerebral biomarkers for pigs for pathophysiological changes and neuro-inflammation are limited. The current study aims to characterize the localization of OT/OTR and the endogenous H2S producing enzymes together with relevant neuro-inflammatory markers on available porcine brain tissue from an acute subdural hematoma (ASDH) model. In a recent pilot study, anesthetized pigs underwent ASDH by injection of 20 mL of autologous blood above the left parietal cortex and were resuscitated with neuro-intensive care measures. After 54 h of intensive care, the animals were sacrificed, the brain was removed and analyzed via immunohistochemistry. The endogenous H2S producing enzymes cystathionine-ɤ-lyase (CSE) and cystathionine-ß-synthase (CBS), the OTR, and OT were localized in neurons, vasculature and parenchyma at the base of sulci, where pressure-induced injury leads to maximal stress in the gyrencephalic brain. The pathophysiological changes in response to brain injury in humans and pigs, we show here, are comparable. We additionally identified modulators of brain injury to further characterize the pathophysiology of ASDH and which may indicate future therapeutic approaches.

5.
Mol Neurobiol ; 56(7): 5111-5121, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30484112

RESUMEN

Chronic administration of L-DOPA, the first-line treatment of dystonic symptoms in childhood or in Parkinson's disease, often leads to the development of abnormal involuntary movements (AIMs), which represent an important clinical problem. Although it is known that Riluzole attenuates L-DOPA-induced AIMs, the molecular mechanisms underlying this effect are not understood. Therefore, we studied the behavior and performed RNA sequencing of the striatum in three groups of rats that all received a unilateral lesion with 6-hydroxydopamine in their medial forebrain bundle, followed by the administration of saline, L-DOPA, or L-DOPA combined with Riluzole. First, we provide evidence that Riluzole attenuates AIMs in this rat model. Subsequently, analysis of the transcriptomics data revealed that Riluzole is predicted to reduce the activity of CREB1, a transcription factor that regulates the expression of multiple proteins that interact in a molecular landscape involved in apoptosis. Although this mechanism underlying the beneficial effect of Riluzole on AIMs needs to be confirmed, it provides clues towards novel or existing compounds for the treatment of AIMs that modulate the activity of CREB1 and, hence, its downstream targets.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/antagonistas & inhibidores , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Discinesia Inducida por Medicamentos/metabolismo , Discinesia Inducida por Medicamentos/prevención & control , Levodopa/toxicidad , Riluzol/uso terapéutico , Animales , Modelos Animales de Enfermedad , Antagonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Aminoácidos Excitadores/uso terapéutico , Masculino , Oxidopamina/toxicidad , Mapas de Interacción de Proteínas/efectos de los fármacos , Mapas de Interacción de Proteínas/fisiología , Distribución Aleatoria , Ratas , Ratas Wistar , Riluzol/farmacología
6.
PLoS One ; 13(4): e0196515, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29698507

RESUMEN

Motor tics are sudden, repetitive, involuntary movements representing the hallmark behaviors of the neurodevelopmental disease Tourette's syndrome (TS). The primary cause of TS remains unclear. The initial observation that dopaminergic antagonists alleviate tics led to the development of a dopaminergic theory of TS etiology which is supported by post mortem and in vivo studies indicating that non-physiological activation of the striatum could generate tics. The striatum controls movement execution through the balanced activity of dopamine receptor D1 and D2-expressing medium spiny neurons of the direct and indirect pathway, respectively. Different neurotransmitters can activate or repress striatal activity and among them, dopamine plays a major role. In this study we introduced a chronic dopaminergic alteration in juvenile rats, in order to modify the delicate balance between direct and indirect pathway. This manipulation was done in the dorsal striatum, that had been associated with tic-like movements generation in animal models. The results were movements resembling tics, which were categorized and scored according to a newly developed rating scale and were reduced by clonidine and riluzole treatment. Finally, post mortem analyses revealed altered RNA expression of dopaminergic receptors D1 and D2, suggesting an imbalanced dopaminergic regulation of medium spiny neuron activity as being causally related to the observed phenotype.


Asunto(s)
Cuerpo Estriado/metabolismo , Síndrome de Tourette/fisiopatología , Animales , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Agonistas de Dopamina/farmacología , Regulación hacia Abajo/efectos de los fármacos , Haloperidol/farmacología , Masculino , Actividad Motora/efectos de los fármacos , Oxidopamina/farmacología , Fenotipo , Quinpirol/farmacología , Ratas , Ratas Wistar , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo
7.
Front Neurol ; 9: 59, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29487562

RESUMEN

Tourette's syndrome (TS) is a neurodevelopmental disorder characterized primarily by motor and vocal tics. Comorbidities such as attention deficit and hyperactivity disorder (ADHD) are observed in over 50% of TS patients. We applied aripiprazole in a juvenile rat model that displays motor tics and hyperactivity. We additionally assessed the amount of ultrasonic vocalizations (USVs) as an indicator for the presence of vocal tics and evaluated the changes in the striatal neurometabolism using in vivo proton magnetic resonance spectroscopy (1H-MRS) at 11.7T. Thirty-one juvenile spontaneously hypertensive rats (SHRs) underwent bicuculline striatal microinjection and treatment with either aripiprazole or vehicle. Control groups were sham operated and sham injected. Behavior, USVs, and striatal neurochemical profile were analyzed at early, middle, and late adolescence (postnatal days 35 to 50). Bicuculline microinjections in the dorsolateral striatum induced motor tics in SHR juvenile rats. Acute aripiprazole administration selectively reduced both tic frequency and latency, whereas stereotypies, USVs, and hyperactivity remained unaltered. The striatal neurochemical profile was only moderately altered after tic-induction and was not affected by systemic drug treatment. When applied to a young rat model that provides high degrees of construct, face, and predictive validity for TS and comorbid ADHD, aripiprazole selectively reduces motor tics, revealing that tics and stereotypies are distinct phenomena in line with clinical treatment of patients. Finally, our 1H-MRS results suggest a critical revision of the striatal role in the hypothesized cortico-striatal dysregulation in TS pathophysiology.

8.
Front Neurosci ; 10: 133, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27092043

RESUMEN

Tourette's syndrome (TS) is a neurodevelopmental disorder characterized by fluctuating motor and vocal tics, usually preceded by sensory premonitions, called premonitory urges. Besides tics, the vast majority-up to 90%-of TS patients suffer from psychiatric comorbidities, mainly attention deficit/hyperactivity disorder (ADHD) and obsessive-compulsive disorder (OCD). The etiology of TS remains elusive. Genetics is believed to play an important role, but it is clear that other factors contribute to TS, possibly altering brain functioning and architecture during a sensitive phase of neural development. Clinical brain imaging and genetic studies have contributed to elucidate TS pathophysiology and disease mechanisms; however, TS disease etiology still is poorly understood. Findings from genetic studies led to the development of genetic animal models, but they poorly reflect the pathophysiology of TS. Addressing the role of neurotransmission, brain regions, and brain circuits in TS disease pathomechanisms is another focus area for preclinical TS model development. We are now in an interesting moment in time when numerous innovative animal models are continuously brought to the attention of the public. Due to the diverse and largely unknown etiology of TS, there is no single preclinical model featuring all different aspects of TS symptomatology. TS has been dissected into its key symptomst hat have been investigated separately, in line with the Research Domain Criteria concept. The different rationales used to develop the respective animal models are critically reviewed, to discuss the potential of the contribution of animal models to elucidate TS disease mechanisms.

9.
Front Neurosci ; 10: 384, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27601976

RESUMEN

Gilles de la Tourette Syndrome (GTS) is characterized by the presence of multiple motor and phonic tics with a fluctuating course of intensity, frequency, and severity. Up to 90% of patients with GTS present with comorbid conditions, most commonly attention-deficit/hyperactivity disorder (ADHD), and obsessive-compulsive disorder (OCD), thus providing an excellent model for the exploration of shared etiology across disorders. TS-EUROTRAIN (FP7-PEOPLE-2012-ITN, Grant Agr.No. 316978) is a Marie Curie Initial Training Network (http://ts-eurotrain.eu) that aims to elucidate the complex etiology of the onset and clinical course of GTS, investigate the neurobiological underpinnings of GTS and related disorders, translate research findings into clinical applications, and establish a pan-European infrastructure for the study of GTS. This includes the challenges of (i) assembling a large genetic database for the evaluation of the genetic architecture with high statistical power; (ii) exploring the role of gene-environment interactions including the effects of epigenetic phenomena; (iii) employing endophenotype-based approaches to understand the shared etiology between GTS, OCD, and ADHD; (iv) establishing a developmental animal model for GTS; (v) gaining new insights into the neurobiological mechanisms of GTS via cross-sectional and longitudinal neuroimaging studies; and (vi) partaking in outreach activities including the dissemination of scientific knowledge about GTS to the public. Fifteen partners from academia and industry and 12 PhD candidates pursue the project. Here, we aim to share the design of an interdisciplinary project, showcasing the potential of large-scale collaborative efforts in the field of GTS. Our ultimate aims are to elucidate the complex etiology and neurobiological underpinnings of GTS, translate research findings into clinical applications, and establish Pan-European infrastructure for the study of GTS and associated disorders.

10.
Int Rev Neurobiol ; 112: 95-130, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24295619

RESUMEN

A major pathophysiological role for the dopaminergic system in Tourette's syndrome (TS) has been presumed ever since the discovery that dopamine-receptor antagonists can alleviate tics. Especially recent molecular genetic studies, functional imaging studies, and some rare postmortem studies have given more and more hints that other neurotransmitter systems are involved as well. Dysfunction in the dopamine metabolism-in particular during early development-might lead to counter-regulations in the other systems or vice versa. This chapter will give an overview of the studies that prove the involvement of other neurotransmitter systems such as the major monoaminergic neurotransmitters norepinephrine, serotonin, and histamine; the most important excitatory neurotransmitter, the amino acid glutamate; the major inhibitory neurotransmitter y-aminobutyric acid, as well as acetylcholine, endocannabinoid, corticoid; and others. These studies will hopefully lead to fundamental advances in the psychopharmacological treatment of TS. While tic disorders have been previously treated mainly with dopamine antagonists, some authors already favor alpha-agonists. Clinical trials with glutamate agonists and antagonists and compounds influencing the histaminergic system are currently being conducted. Since the different neurotransmitter systems consist of several receptor subtypes which might mediate different effects on locomotor activity, patients with TS may respond differentially to selective agonists or antagonists. Effects of agonistic or antagonistic compounds on tic symptoms might also be dose dependent. Further studies will lead to a broader spectrum of psychopharmacological treatment options in TS.


Asunto(s)
Neurotransmisores/metabolismo , Transmisión Sináptica/fisiología , Síndrome de Tourette/fisiopatología , Corticoesteroides/metabolismo , Humanos , Tomografía de Emisión de Positrones , Tomografía Computarizada de Emisión de Fotón Único , Síndrome de Tourette/diagnóstico por imagen , Síndrome de Tourette/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA