RESUMEN
X-ray multi-projection imaging (XMPI) has the potential to provide rotation-free 3D movies of optically opaque samples. The absence of rotation enables superior imaging speed and preserves fragile sample dynamics by avoiding the centrifugal forces introduced by conventional rotary tomography. Here, we present our XMPI observations at the ID19 beamline (ESRF, France) of 3D dynamics in melted aluminum with 1000 frames per second and 8 µm resolution per projection using the full dynamical range of our detectors. Since XMPI is a method under development, we also provide different tests for the instrumentation of up to 3000 frames per second. As the high-brilliance of 4th generation light-sources becomes more available, XMPI is a promising technique for current and future X-ray imaging instruments.
RESUMEN
An experimental setup has been developed that allows for capturing up to 25 tomogramsâ s-1 using the white X-ray beam at the experimental station EDDI of BESSY II, Berlin, Germany. The key points are the use of a newly developed, precise and fast rotation stage, a very efficient scintillator and a fast CMOS camera. As a first application, the foaming of aluminium alloy granules at 923â K was investigated in situ. Formation and growth of bubbles in the liquid material were observed and found to be influenced by the limited thermal conductivity in the bulk granules. Changes that took place between two tomographic frames separated in time by 39â ms could be detected and analysed quantitatively.
RESUMEN
High-speed X-ray imaging in two dimensions (radioscopy) and three dimensions (tomography) is combined with fast X-ray diffraction in a new experimental setup at the synchrotron radiation source BESSYâ II. It allows for in situ studies of time-dependent phenomena in complex systems. As a first application, the foaming process of an aluminium alloy was studied in three different experiments. Radioscopy, optical expansion measurements and diffraction were used to correlate the change of foam morphology to the various phases formed during heating of an AlMg15Cu10 alloy to 620°C in the first experiment. Radioscopy was then replaced by tomography. Acquiring tomograms and diffraction data at 2â Hz allows even more details of foam evolution to be captured, for example, bubble size distribution. In a third experiment, 4â Hz tomography yields dynamic insights into fast phenomena in evolving metal foam.
RESUMEN
The structure and constitution of opaque materials can be studied with X-ray imaging methods such as 3D tomography. To observe the dynamic evolution of their structure and the distribution of constituents, for example, during processing, heating, mechanical loading, etc., 3D imaging has to be fast enough. In this paper, the recent developments of time-resolved X-ray tomography that have led to what one now calls "tomoscopy" are briefly reviewed A novel setup is presented and applied that pushes temporal resolution down to just 1 ms, that is, 1000 tomograms per second (tps) are acquired, while maintaining spatial resolutions of micrometers and running experiments for minutes without interruption. Applications recorded at different acquisition rates ranging from 50 to 1000 tps are presented. The authors observe and quantify the immiscible hypermonotectic reaction of AlBi10 (in wt%) alloy and dendrite evolution in AlGe10 (in wt%) casting alloy during fast solidification. The combustion process and the evolution of the constituents are analyzed in a burning sparkler. Finally, the authors follow the structure and density of two metal foams over a long period of time and derive details of bubble formation and bubble ageing including quantitative analyses of bubble parameters with millisecond temporal resolution.
RESUMEN
The complex flow of liquid metal in evolving metallic foams is still poorly understood due to difficulties in studying hot and opaque systems. We apply X-ray tomoscopy -the continuous acquisition of tomographic (3D) images- to clarify key dynamic phenomena in liquid aluminium foam such as nucleation and growth, bubble rearrangements, liquid retraction, coalescence and the rupture of films. Each phenomenon takes place on a typical timescale which we cover by obtaining 208 full tomograms per second over a period of up to one minute. An additional data processing algorithm provides information on the 1 ms scale. Here we show that bubble coalescence is not only caused by gravity-induced drainage, as experiments under weightlessness show, and by stresses caused by foam growth, but also by local pressure peaks caused by the blowing agent. Moreover, details of foam expansion and phenomena such as rupture cascades and film thinning before rupture are quantified. These findings allow us to propose a way to obtain foams with smaller and more equally sized bubbles.