Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Immunol ; 203(1): 225-235, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31118224

RESUMEN

C-reactive protein (CRP) is an acute-phase protein produced in high quantities by the liver in response to infection and during chronic inflammatory disorders. Although CRP is known to facilitate the clearance of cell debris and bacteria by phagocytic cells, the role of CRP in additional immunological functions is less clear. This study shows that complexed CRP (phosphocholine [PC]:CRP) (formed by binding of CRP to PC moieties), but not soluble CRP, synergized with specific TLRs to posttranscriptionally amplify TNF, IL-1ß, and IL-23 production by human inflammatory macrophages. We identified FcγRI and IIa as the main receptors responsible for initiating PC:CRP-induced inflammation. In addition, we identified the underlying mechanism, which depended on signaling through kinases Syk, PI3K, and AKT2, as well as glycolytic reprogramming. These data indicate that in humans, CRP is not only a marker but also a driver of inflammation by human macrophages. Therefore, although providing host defense against bacteria, PC:CRP-induced inflammation may also exacerbate pathology in the context of disorders such as atherosclerosis.


Asunto(s)
Proteína C-Reactiva/metabolismo , Inflamación/inmunología , Hígado/fisiología , Receptores de IgG/metabolismo , Aterosclerosis/inmunología , Proteína C-Reactiva/química , Células Cultivadas , Reprogramación Celular , Citocinas/metabolismo , Glucólisis , Humanos , Mediadores de Inflamación/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilcolina/química , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Quinasa Syk/metabolismo , Receptores Toll-Like/metabolismo
2.
Int J Mol Sci ; 22(21)2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34769069

RESUMEN

C-reactive protein (CRP) is an acute-phase protein in humans that is produced in high quantities by the liver upon infection and under inflammatory conditions. Although CRP is commonly used as a marker of inflammation, CRP can also directly contribute to inflammation by eliciting pro-inflammatory cytokine production by immune cells. Since CRP is highly elevated in serum under inflammatory conditions, we have studied the CRP-induced cytokine profile of human monocytes, one of the main innate immune cell populations in blood. We identified that CRP is relatively unique in its capacity to induce production of the pro-inflammatory cytokine IL-23, which was in stark contrast to a wide panel of pattern recognition receptor (PRR) ligands. We show that CRP-induced IL-23 production was mediated at the level of gene transcription, since CRP particularly promoted gene transcription of IL23A (encoding IL-23p19) instead of IL12A (encoding IL-12p35), while PRR ligands induce the opposite response. Interestingly, when CRP stimulation was combined with PRR ligand stimulation, as for example, occurs in the context of sepsis, IL-23 production by monocytes was strongly reduced. Combined, these data identify CRP as a unique individual ligand to induce IL-23 production by monocytes, which may contribute to shaping systemic immune responses under inflammatory conditions.


Asunto(s)
Proteína C-Reactiva/metabolismo , Subunidad p19 de la Interleucina-23/metabolismo , Monocitos/metabolismo , Células Cultivadas , Humanos , Subunidad p19 de la Interleucina-23/genética , ARN Mensajero/genética , Activación Transcripcional
3.
Eur J Immunol ; 48(11): 1796-1809, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30184252

RESUMEN

Type I and type III interferons (IFNs) are fundamental for antiviral immunity, but prolonged expression is also detrimental to the host. Therefore, upon viral infection high levels of type I and III IFNs are followed by a strong and rapid decline. However, the mechanisms responsible for this suppression are still largely unknown. Here, we show that IgG opsonization of model viruses influenza and respiratory syncytial virus (RSV) strongly and selectively suppressed type I and III IFN production by various human antigen-presenting cells. This suppression was induced by selective inhibition of TLR, RIG-I-like receptor, and STING-dependent type I and III IFN gene transcription. Surprisingly, type I and III IFN suppression was mediated by Syk and PI3K independent inhibitory signaling via FcγRIIa, thereby identifying a novel non-canonical FcγRIIa pathway in myeloid cells. Together, these results indicate that IgG opsonization of viruses functions as a novel negative feedback mechanism in humans, which may play a role in the selective suppression of type I and III IFN responses during the late-phase of viral infections. In addition, activation of this pathway may be used as a tool to limit type I IFN-associated pathology.


Asunto(s)
Interferón Tipo I/inmunología , Interferones/inmunología , Células Mieloides/inmunología , Receptores de IgG/inmunología , Animales , Células Presentadoras de Antígenos/inmunología , Células Cultivadas , Femenino , Humanos , Inmunoglobulina G/inmunología , Ratones , Ratones Endogámicos C57BL , Virus Sincitiales Respiratorios/inmunología , Transducción de Señal/inmunología , Quinasa Syk/inmunología , Transcripción Genética/inmunología , Virosis/inmunología , Interferón lambda
4.
Cells ; 10(5)2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-34065953

RESUMEN

Macrophages play a key role in induction of inflammatory responses. These inflammatory responses are mostly considered to be instigated by activation of pattern recognition receptors (PRRs) or cytokine receptors. However, recently it has become clear that also antibodies and pentraxins, which can both activate Fc receptors (FcRs), induce very powerful inflammatory responses by macrophages that can even be an order of magnitude greater than PRRs. While the physiological function of this antibody-dependent inflammation (ADI) is to counteract infections, undesired activation or over-activation of this mechanism will lead to pathology, as observed in a variety of disorders, including viral infections such as COVID-19, chronic inflammatory disorders such as Crohn's disease, and autoimmune diseases such as rheumatoid arthritis. In this review we discuss how physiological ADI provides host defense by inducing pathogen-specific immunity, and how erroneous activation of this mechanism leads to pathology. Moreover, we will provide an overview of the currently known signaling and metabolic pathways that underlie ADI, and how these can be targeted to counteract pathological inflammation.


Asunto(s)
Anticuerpos/metabolismo , Proteína C-Reactiva/metabolismo , Inflamación/inmunología , Componente Amiloide P Sérico/metabolismo , Anticuerpos/inmunología , Proteína C-Reactiva/inmunología , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunidad Innata , Inflamación/metabolismo , Inflamación/microbiología , Macrófagos/inmunología , Macrófagos/metabolismo , Redes y Vías Metabólicas/inmunología , Receptores Fc/metabolismo , Componente Amiloide P Sérico/inmunología , Transducción de Señal/inmunología
5.
Front Immunol ; 10: 739, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31024565

RESUMEN

Antigen-presenting cells (APCs) such as dendritic cells (DCs) are crucial for initiation of adequate inflammatory responses, which critically depends on the cooperated engagement of different receptors. In addition to pattern recognition receptors (PRRs), Fc gamma receptors (FcγRs) have recently been identified to be important in induction of inflammation by DCs. FcγRs that recognize IgG immune complexes, which are formed upon opsonization of pathogens, induce pro-inflammatory cytokine production through cross-talk with PRRs such as Toll-like receptors (TLRs). While the physiological function of FcγR-TLR cross-talk is to provide protective immunity against invading pathogens, undesired activation of FcγR-TLR cross-talk, e.g., by autoantibodies, also plays a major role in the development of chronic inflammatory disorders such as rheumatoid arthritis (RA). Yet, the molecular mechanisms of FcγR-TLR cross-talk are still largely unknown. Here, we identified that FcγR-TLR cross-talk-induced cytokine production critically depends on activation of the transcription factor interferon regulatory factor 5 (IRF5), which results from induction of two different pathways that converge on IRF5 activation. First, TLR stimulation induced phosphorylation of TBK1/IKKε, which is required for IRF5 phosphorylation and subsequent activation. Second, FcγR stimulation induced nuclear translocation of IRF5, which is essential for gene transcription by IRF5. We identified that IRF5 activation by FcγR-TLR cross-talk amplifies pro-inflammatory cytokine production by increasing cytokine gene transcription, but also by synergistically inducing glycolytic reprogramming, which is another essential process for induction of inflammatory responses by DCs. Combined, here we identified IRF5 as a pivotal component of FcγR-TLR cross-talk in human APCs. These data may provide new potential targets to suppress chronic inflammation in autoantibody-associated diseases that are characterized by undesired or excessive FcγR-TLR cross-talk, such as RA, systemic sclerosis, and systemic lupus erythematous.


Asunto(s)
Células Dendríticas/inmunología , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , Receptores de IgG/metabolismo , Receptores Toll-Like/metabolismo , Factor de Necrosis Tumoral alfa/biosíntesis , Transporte Activo de Núcleo Celular , Células Dendríticas/metabolismo , Glucólisis/inmunología , Humanos , Quinasa I-kappa B/inmunología , Quinasa I-kappa B/metabolismo , Técnicas In Vitro , Inflamación/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Modelos Inmunológicos , Monocitos/inmunología , Monocitos/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/inmunología , Proteínas Serina-Treonina Quinasas/metabolismo , Receptor Cross-Talk/inmunología , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA