Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Am J Physiol Renal Physiol ; 326(6): F942-F956, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38634135

RESUMEN

T cells mediate organ injury and repair. A proportion of unconventional kidney T cells called double-negative (DN) T cells (TCR+ CD4- CD8-), with anti-inflammatory properties, were previously demonstrated to protect from early injury in moderate experimental acute kidney injury (AKI). However, their role in repair after AKI has not been studied. We hypothesized that DN T cells mediate repair after severe AKI. C57B6 mice underwent severe (40 min) unilateral ischemia-reperfusion injury (IRI). Kidney DN T cells were studied by flow cytometry and compared with gold-standard anti-inflammatory CD4+ regulatory T cells (Tregs). In vitro effects of DN T cells and Tregs on renal tubular epithelial cell (RTEC) repair after injury were quantified with live-cell analysis. DN T cells, Tregs, CD4, or vehicle were adoptively transferred after severe AKI. Glomerular filtration rate (GFR) was measured using fluorescein isothiocyanate (FITC)-sinistrin. Fibrosis was assessed with Masson's trichrome staining. Profibrotic genes were measured with qRT-PCR. Percentages and the numbers of DN T cells substantially decreased during repair phase after severe AKI, as well as their activation and proliferation. Both DN T cells and Tregs accelerated RTEC cell repair in vitro. Post-AKI transfer of DN T cells reduced kidney fibrosis and improved GFR, as did Treg transfer. DN T cell transfer lowered transforming growth factor (TGF)ß1 and α-smooth muscle actin (αSMA) expression. DN T cells reduced effector-memory CD4+ T cells and IL-17 expression. DN T cells undergo quantitative and phenotypical changes after severe AKI, accelerate RTEC repair in vitro as well as improve GFR and renal fibrosis in vivo. DN T cells have potential as immunotherapy to accelerate repair after AKI.NEW & NOTEWORTHY Double-negative (DN) T cells (CD4- CD8-) are unconventional kidney T cells with regulatory abilities. Their role in repair from acute kidney injury (AKI) is unknown. Kidney DN T cell population decreased during repair after ischemic AKI, in contrast to regulatory T cells (Tregs) which increased. DN T cell administration accelerated tubular repair in vitro, while after severe in vivo ischemic injury reduced kidney fibrosis and increased glomerular filtration rate (GFR). DN T cell infusion is a potential therapeutic agent to improve outcome from severe AKI.


Asunto(s)
Lesión Renal Aguda , Tasa de Filtración Glomerular , Ratones Endogámicos C57BL , Daño por Reperfusión , Linfocitos T Reguladores , Animales , Lesión Renal Aguda/inmunología , Lesión Renal Aguda/patología , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/fisiopatología , Daño por Reperfusión/inmunología , Daño por Reperfusión/patología , Daño por Reperfusión/metabolismo , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Masculino , Modelos Animales de Enfermedad , Fibrosis , Células Epiteliales/metabolismo , Células Epiteliales/patología , Traslado Adoptivo , Ratones , Riñón/patología , Riñón/inmunología , Riñón/metabolismo , Fenotipo , Túbulos Renales/patología , Túbulos Renales/metabolismo , Regeneración , Células Cultivadas
2.
Kidney Int ; 104(3): 470-491, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37011727

RESUMEN

Targeting gut microbiota has shown promise to prevent experimental acute kidney injury (AKI). However, this has not been studied in relation to accelerating recovery and preventing fibrosis. Here, we found that modifying gut microbiota with an antibiotic administered after severe ischemic kidney injury in mice, particularly with amoxicillin, accelerated recovery. These indices of recovery included increased glomerular filtration rate, diminution of kidney fibrosis, and reduction of kidney profibrotic gene expression. Amoxicillin was found to increase stool Alistipes, Odoribacter and Stomatobaculum species while significantly depleting Holdemanella and Anaeroplasma. Specifically, amoxicillin treatment reduced kidney CD4+T cells, interleukin (IL)-17 +CD4+T cells, and tumor necrosis factor-α double negative T cells while it increased CD8+T cells and PD1+CD8+T cells. Amoxicillin also increased gut lamina propria CD4+T cells while decreasing CD8+T and IL-17+CD4+T cells. Amoxicillin did not accelerate repair in germ-free or CD8-deficient mice, demonstrating microbiome and CD8+T lymphocytes dependence for amoxicillin protective effects. However, amoxicillin remained effective in CD4-deficient mice. Fecal microbiota transplantation from amoxicillin-treated to germ-free mice reduced kidney fibrosis and increased Foxp3+CD8+T cells. Amoxicillin pre-treatment protected mice against kidney bilateral ischemia reperfusion injury but not cisplatin-induced AKI. Thus, modification of gut bacteria with amoxicillin after severe ischemic AKI is a promising novel therapeutic approach to accelerate recovery of kidney function and mitigate the progression of AKI to chronic kidney disease.


Asunto(s)
Lesión Renal Aguda , Microbiota , Daño por Reperfusión , Animales , Ratones , Lesión Renal Aguda/inducido químicamente , Riñón/patología , Daño por Reperfusión/patología , Isquemia , Fibrosis , Amoxicilina/efectos adversos
3.
Kidney Int ; 102(1): 25-37, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35413379

RESUMEN

Double negative (DN) T cells, one of the least studied T lymphocyte subgroups, express T cell receptor αß but lack CD4 and CD8 coreceptors. DN T cells are found in multiple organs including kidney, lung, heart, gastrointestinal tract, liver, genital tract, and central nervous system. DN T cells suppress inflammatory responses in different disease models including experimental acute kidney injury, and significant evidence supports an important role in the pathogenesis of systemic lupus erythematosus. However, little is known about these cells in other kidney diseases. Therefore, it is important to better understand different functions of DN T cells and their signaling pathways as promising therapeutic targets, particularly with the increasing application of T cell-directed therapy in humans. In this review, we aim to summarize studies performed on DN T cells in normal and diseased organs in the setting of different disease models with a focus on kidney.


Asunto(s)
Lesión Renal Aguda , Receptores de Antígenos de Linfocitos T alfa-beta , Lesión Renal Aguda/metabolismo , Antígenos CD8/metabolismo , Linfocitos T CD8-positivos/metabolismo , Humanos , Riñón/metabolismo , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Subgrupos de Linfocitos T/metabolismo
4.
Sci Rep ; 14(1): 4469, 2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-38396136

RESUMEN

Multiple types of T cells have been described and assigned pathophysiologic functions in the kidneys. However, the existence and functions of TCR+CD4+CD8+ (double positive; DP) T cells are understudied in normal and diseased murine and human kidneys. We studied kidney DPT cells in mice at baseline and after ischemia reperfusion (IR) and cisplatin injury. Additionally, effects of viral infection and gut microbiota were studied. Human kidneys from patients with renal cell carcinoma were evaluated. Our results demonstrate that DPT cells expressing CD4 and CD8 co-receptors constitute a minor T cell population in mouse kidneys. DPT cells had significant Ki67 and PD1 expression, effector/central memory phenotype, proinflammatory cytokine (IFNγ, TNFα and IL-17) and metabolic marker (GLUT1, HKII, CPT1a and pS6) expression at baseline. IR, cisplatin and viral infection elevated DPT cell proportions, and induced distinct functional and metabolic changes. scRNA-seq analysis showed increased expression of Klf2 and Ccr7 and enrichment of TNFα and oxidative phosphorylation related genes in DPT cells. DPT cells constituted a minor population in both normal and cancer portion of human kidneys. In conclusion, DPT cells constitute a small population of mouse and human kidney T cells with distinct inflammatory and metabolic profile at baseline and following kidney injury.


Asunto(s)
Linfocitos T , Virosis , Animales , Ratones , Humanos , Linfocitos T/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Cisplatino/farmacología , Riñón/metabolismo , Isquemia/patología , Virosis/patología
5.
Sci Rep ; 13(1): 20888, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-38017015

RESUMEN

T cells are important in the pathogenesis of acute kidney injury (AKI), and TCR+CD4-CD8- (double negative-DN) are T cells that have regulatory properties. However, there is limited information on DN T cells compared to traditional CD4+ and CD8+ cells. To elucidate the molecular signature and spatial dynamics of DN T cells during AKI, we performed single-cell RNA sequencing (scRNA-seq) on sorted murine DN, CD4+, and CD8+ cells combined with spatial transcriptomic profiling of normal and post AKI mouse kidneys. scRNA-seq revealed distinct transcriptional profiles for DN, CD4+, and CD8+ T cells of mouse kidneys with enrichment of Kcnq5, Klrb1c, Fcer1g, and Klre1 expression in DN T cells compared to CD4+ and CD8+ T cells in normal kidney tissue. We validated the expression of these four genes in mouse kidney DN, CD4+ and CD8+ T cells using RT-PCR and Kcnq5, Klrb1, and Fcer1g genes with the NIH human kidney precision medicine project (KPMP). Spatial transcriptomics in normal and ischemic mouse kidney tissue showed a localized cluster of T cells in the outer medulla expressing DN T cell genes including Fcer1g. These results provide a template for future studies in DN T as well as CD4+ and CD8+ cells in normal and diseased kidneys.


Asunto(s)
Lesión Renal Aguda , Linfocitos T CD8-positivos , Humanos , Animales , Ratones , Linfocitos T CD8-positivos/metabolismo , Transcriptoma , Antígenos CD8/metabolismo , Antígenos CD4/metabolismo , Riñón/metabolismo , Lesión Renal Aguda/patología , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo
6.
Antioxid Redox Signal ; 38(13-15): 959-973, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36734409

RESUMEN

Aims: T cells play pathophysiologic roles in kidney ischemia-reperfusion injury (IRI), and the nuclear factor erythroid 2-related factor 2/kelch-like ECH-associated protein 1 (Nrf2/Keap1) pathway regulates T cell responses. We hypothesized that clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated Keap1-knockout (KO) augments Nrf2 antioxidant potential of CD4+ T cells, and that Keap1-KO CD4+ T cell immunotherapy protects from kidney IRI. Results: CD4+ T cell Keap1-KO resulted in significant increase of Nrf2 target genes NAD(P)H quinone dehydrogenase 1, heme oxygenase 1, glutamate-cysteine ligase catalytic subunit, and glutamate-cysteine ligase modifier subunit. Keap1-KO cells displayed no signs of exhaustion, and had significantly lower levels of interleukin 2 (IL2) and IL6 in normoxic conditions, but increased interferon gamma in hypoxic conditions in vitro. In vivo, adoptive transfer of Keap1-KO CD4+ T cells before IRI improved kidney function in T cell-deficient nu/nu mice compared with mice receiving unedited control CD4+ T cells. Keap1-KO CD4+ T cells isolated from recipient kidneys 24 h post IR were less activated compared with unedited CD4+ T cells, isolated from control kidneys. Innovation: Editing Nrf2/Keap1 pathway in murine T cells using CRISPR/Cas9 is an innovative and promising immunotherapy approach for kidney IRI and possibly other solid organ IRI. Conclusion: CRISPR/Cas9-mediated Keap1-KO increased Nrf2-regulated antioxidant gene expression in murine CD4+ T cells, modified responses to in vitro hypoxia and in vivo kidney IRI. Gene editing targeting the Nrf2/Keap1 pathway in T cells is a promising approach for immune-mediated kidney diseases.


Asunto(s)
Antioxidantes , Daño por Reperfusión , Ratones , Animales , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Antioxidantes/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Sistemas CRISPR-Cas , Glutamato-Cisteína Ligasa/genética , Glutamato-Cisteína Ligasa/metabolismo , Edición Génica , Riñón/metabolismo , Daño por Reperfusión/genética , Daño por Reperfusión/terapia , Daño por Reperfusión/metabolismo , Estrés Oxidativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA