Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nano Lett ; 24(2): 623-631, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38048272

RESUMEN

The cooling power of a radiative cooler is more than halved in the tropics, e.g., Singapore, because of its harsh weather conditions including high humidity (84% on average), strong downward atmospheric radiation (∼40% higher than elsewhere), abundant rainfall, and intense solar radiation (up to 1200 W/m2 with ∼58% higher UV irradiation). So far, there has been no report of daytime radiative cooling that well achieves effective subambient cooling. Herein, through integrated passive cooling strategies in a hydrogel with desirable optofluidic properties, we demonstrate stable subambient (4-8 °C) cooling even under the strongest solar radiation in Singapore. The integrated passive cooler achieves an ultrahigh cooling power of ∼350 W/m2, 6-10 times higher than a radiative cooler in a tropical climate. An in situ study of radiative cooling with various hydration levels and ambient humidity is conducted to understand the interaction between radiation and evaporative cooling. This work provides insights for the design of an integrated cooler for various climates.

2.
Build Environ ; 213: 108888, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35169378

RESUMEN

Considering that safe-distancing and mask-wearing measures are not strictly enforced in dining settings in the context of SARS-CoV-2, the infection risks of patrons in a dining outlet (e.g., a cafe) is assessed in this study. The size-resolved aerosol emission rate (AER) and droplets deposition rate (DDR) on dining plates from speaking were obtained through chamber measurements and droplet deposition visualization via fluorescent imaging technique (FIT), respectively. The AER from speaking was 24698 #/min in the size range of 0.3-5.5 µm, while the DDR was 365 #/min in the size range of 43-2847 µm. Furthermore, an infection risk model was adopted and revised to evaluate the infection risk of 120 diners for a "3-h event" in the cafe. In a four-person dining setting around a rectangular table, a diner seated diagonally across an infected person posed the least infection risk due to the deposited droplets on dining plates. The deposited droplets on a dining plate were dominant in possible viral transmission as compared to the long-range airborne route when a diner shared a table with the infected person. Yet, long-range airborne transmission had the potential to infect other diners in the cafe, even resulting in super-spreading events. A fresh air supply of 12.1-17.0 L/s per person is recommended for the cafe to serve 4-20 diners concurrently to minimize infection risks due to aerosols. Current ventilation standards (e.g., 8-10 L/s per person) for a cafe are not enough to avoid the airborne transmission of SARS-CoV-2.

3.
Build Environ ; 205: 108239, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34393326

RESUMEN

Airborne transmission of respiratory diseases has been under intense spotlight in the context of coronavirus disease 2019 (COVID-19) where continued resurgence is linked to the relaxation of social interaction measures. To understand the role of speech aerosols in the spread of COVID-19 globally, the lifetime and size distribution of the aerosols are studied through a combination of light scattering observation and aerosol sampling. It was found that aerosols from speaking suspended in stagnant air for up to 9 h with a half-life of 87.2 min. The half-life of the aerosols declined with the increase in air change per hour from 28 to 40 min (1 h-1), 10-14 min (4 h-1), to 4-6 min (9 h-1). The speech aerosols in the size range of about 0.3-2 µm (after dehydration) witnessed the longest lifetime compared to larger aerosols (2-10 µm). These results suggest that speech aerosols have the potential to transmit respiratory viruses across long duration (hours), and long-distance (over social distance) through the airborne route. These findings are important for researchers and engineers to simulate the airborne dispersion of viruses in indoor environments and to design new ventilation systems in the future.

4.
Environ Sci Technol ; 54(22): 14568-14577, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33135417

RESUMEN

Ultrafine particle emissions originating from fused deposition modeling (FDM) three-dimensional (3D) printers have received widespread attention recently. However, the obvious inconsistency and uncertainty in particle emission rates (PERs, #/min) measured by chamber systems still remain, owing to different measurement conditions and calculation models used. Here, a dynamic analysis of the size-resolved PER is conducted through a comparative study of chamber and flow tunnel measurements. Two models to resolve PER from the chamber and a model for flow tunnel measurements were examined. It was found that chamber measurements for different materials underestimated PER by up to an order of magnitude and overestimated particle diameters by up to 2.3 times, while the flow tunnel measurements provided more accurate results. Field measurements of the time-resolved particle size distribution (PSD) in a typical room environment could be predicted well by the flow tunnel measurements, while the chamber measurements could not represent the main PSD characteristics (e.g., particle diameter mode). Secondary aerosols (>30 nm) formed in chambers were not observed in field measurements. Flow tunnel measurements were adopted for the first time as a possible alternative for the study of 3D printer emissions to overcome the disadvantages in chamber methods and as a means to predict exposure levels.


Asunto(s)
Contaminación del Aire Interior , Aerosoles , Contaminación del Aire Interior/análisis , Tamaño de la Partícula , Material Particulado , Fenómenos Físicos
6.
Phys Med Biol ; 69(12)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38821109

RESUMEN

Objective.The validation of deformable image registration (DIR) for contour propagation is often done using contour-based metrics. Meanwhile, dose accumulation requires evaluation of voxel mapping accuracy, which might not be accurately represented by contour-based metrics. By fabricating a deformable anthropomorphic pelvis phantom, we aim to (1) quantify the voxel mapping accuracy for various deformation scenarios, in high- and low-contrast regions, and (2) identify any correlation between dice similarity coefficient (DSC), a commonly used contour-based metric, and the voxel mapping accuracy for each organ.Approach. Four organs, i.e. pelvic bone, prostate, bladder and rectum (PBR), were 3D printed using PLA and a Polyjet digital material, and assembled. The latter three were implanted with glass bead and CT markers within or on their surfaces. Four deformation scenarios were simulated by varying the bladder and rectum volumes. For each scenario, nine DIRs with different parameters were performed on RayStation v10B. The voxel mapping accuracy was quantified by finding the discrepancy between true and mapped marker positions, termed the target registration error (TRE). Pearson correlation test was done between the DSC and mean TRE for each organ.Main results. For the first time, we fabricated a deformable phantom purely from 3D printing, which successfully reproduced realistic anatomical deformations. Overall, the voxel mapping accuracy dropped with increasing deformation magnitude, but improved when more organs were used to guide the DIR or limit the registration region. DSC was found to be a good indicator of voxel mapping accuracy for prostate and rectum, but a comparatively poorer one for bladder. DSC > 0.85/0.90 was established as the threshold of mean TRE ⩽ 0.3 cm for rectum/prostate. For bladder, extra metrics in addition to DSC should be considered.Significance. This work presented a 3D printed phantom, which enabled quantification of voxel mapping accuracy and evaluation of correlation between DSC and voxel mapping accuracy.


Asunto(s)
Pelvis , Fantasmas de Imagen , Humanos , Pelvis/diagnóstico por imagen , Dosis de Radiación , Procesamiento de Imagen Asistido por Computador/métodos , Tomografía Computarizada por Rayos X , Masculino , Impresión Tridimensional
7.
ISA Trans ; 138: 168-185, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36906441

RESUMEN

Undetected partial actuator faults on multi-rotor UAVs can lead to system failures and uncontrolled crashes, necessitating the development of accurate and efficient fault detection and isolation (FDI) strategy. This paper proposes a hybrid FDI model for a quadrotor UAV that integrates an extreme learning neuro-fuzzy algorithm with a model-based extended Kalman filter (EKF). Three FDI models using Fuzzy-ELM, R-EL-ANFIS, and EL-ANFIS are compared based on training, validation performances, and sensitivity to weaker and shorter actuator faults. They are also tested online for linear and nonlinear incipient faults by measuring their isolation time delays and accuracies. The results show that the Fuzzy-ELM FDI model exhibits greater efficiency and sensitivity, while Fuzzy-ELM and R-EL-ANFIS FDI models demonstrate better performance than a conventional neuro-fuzzy algorithm, ANFIS.

8.
Sci Rep ; 13(1): 15488, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37726295

RESUMEN

Companies are increasingly asking their employees to find creative solutions to their problems. However, the office environment may reduce an employee's creative potential. In this study, the role of indoor air quality parameters (PM2.5, TVOC, and CO2) in maintaining a creative environment (involving lateral thinking ability) was evaluated by Serious Brick Play (SBP), an adaptation of the LEGO Serious Play (LSP) framework. This study was conducted in a simulated office space with 92 participants over a period of 6 weeks. The SBP required participants to address a challenge by building using Lego bricks, and then describe the solution within a given timeframe. The creations and descriptions were then graded in terms of originality, fluency, and build. The results indicated that higher TVOC levels were significantly associated with lower-rated creative solutions. A 71.9% reduction in TVOC (from 1000 ppb), improves an individual's full creative potential by 11.5%. Thus, maintaining a low TVOC level will critically enhance creativity in offices.


Asunto(s)
Contaminación del Aire Interior , Humanos , Pensamiento , Condiciones de Trabajo
9.
J Mech Behav Biomed Mater ; 143: 105917, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37216753

RESUMEN

The armour of the ladybird, elytra, protect the body from injury and are well-adapted to flight. However, experimental methods to decipher their mechanical performances had been challenging due to the small size, making it unclear how the elytra balance mass and strength. Here, we provide insights to the relationship between the microstructure and multifunctional properties of the elytra by means of structural characterization, mechanical analysis and finite element simulations. Micromorphology analysis on the elytron revealed the thickness ratio of the upper lamination, middle layer and lower lamination is approximately 51:139:7. The upper lamination had multiple cross fibre layers and the thickness of each fibre layer is not the same. In addition, the tensile strength, elastic modulus, fracture strain, bending stiffness and hardness of elytra were obtained through in-situ tensile and nanoindentation-bending under the influence of multiple loading conditions, which also serve as references for finite element models. The finite element model revealed that structural factors such as thickness of each layer, angle of fibre layer and trabeculae are key to affecting the mechanical properties, but the effect is different. When the thickness of upper, middle and lower layers is the same, the tensile strength provided by unit mass of the model is 52.78% lower than that provided by elytra. These findings broaden the relationship between the structural and mechanical properties of the ladybird elytra, and are expected to inspire the development of sandwich structures in biomedical engineering.


Asunto(s)
Hueso Esponjoso , Fracturas Óseas , Humanos , Análisis de Elementos Finitos , Resistencia a la Tracción , Dureza
10.
Sci Total Environ ; 692: 984-994, 2019 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-31540002

RESUMEN

Ultrafine particles (UFP) and volatile organic compounds (VOC) emitted from fused deposition modelling (FDM) 3D printing have received widespread attention. Here, we characterize the formation mechanisms of emissions from polymer filaments commonly used in FDM 3D printing. The temporal relationship between the amount and species of total VOC (TVOC) at any desired operating thermal condition is obtained through a combination of evolved gas analysis (EGA) and thermogravimetric analysis (TGA) to capture physicochemical reactions, in which the furnace of EGA or TGA closely resembles the heating process of the nozzle in the FDM 3D printer. It is generally observed that emissions initiate at the start of the glass transition process and peak during liquefaction for filaments. Initial increment in emissions during liquefaction and the relatively constant decomposition of products in the liquid phase are two main TVOC formation mechanisms. More importantly, low heating rate has the potential to restrain the formation of carcinogenic monomer, styrene, from ABS. A TVOC measurement method based on weight loss is further proposed and found that TVOC mass yield was 0.03%, 0.21% and 2.14% for PLA, ABS, and PVA, respectively, at 220 °C. Among TVOC, UFP mass accounts for 1% to 5% of TVOC mass depending on the type of filaments used. Also, for the first time, emission of UFP from the nozzle is directly observed through laser imaging.

11.
PLoS One ; 12(6): e0178851, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28594862

RESUMEN

The recent episodes of haze in Southeast Asia have caused some of the worst regional atmospheric pollution ever recorded in history. In order to control the levels of airborne fine particulate matters (PM) indoors, filtration systems providing high PM capturing efficiency are often sought, which inadvertently also results in high airflow resistance (or pressure drop) that increases the energy consumption for air distribution. A pre-conditioning mechanism promoting the formation of particle clusters to enhance PM capturing efficiency without adding flow resistance in the air distribution ductwork could provide an energy-efficient solution. This pre-conditioning mechanism can be fulfilled by acoustic agglomeration, which is a phenomenon that promotes the coagulation of suspended particles by acoustic waves propagating in the fluid medium. This paper discusses the basic mechanisms of acoustic agglomeration along with influencing factors that could affect the agglomeration efficiency. The feasibility to apply acoustic agglomeration to improve filtration in air-conditioning and mechanical ventilation (ACMV) systems is investigated experimentally in a small-scale wind tunnel. Experimental results indicate that this novel application of acoustic pre-conditioning improves the PM2.5 filtration efficiency of the test filters by up to 10% without introducing additional pressure drop. The fan energy savings from not having to switch to a high capturing efficiency filter largely outstrip the additional energy consumed by the acoustics system. This, as a whole, demonstrates potential energy savings from the combined acoustic-enhanced filtration system without compromising on PM capturing efficiency.


Asunto(s)
Filtración/métodos , Material Particulado , Respiración Artificial , Aire Acondicionado , Contaminación del Aire Interior
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA