Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
PLoS Pathog ; 10(4): e1004031, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24699622

RESUMEN

Dengue (DEN) represents the most serious arthropod-borne viral disease. DEN clinical manifestations range from mild febrile illness to life-threatening hemorrhage and vascular leakage. Early epidemiological observations reported that infants born to DEN-immune mothers were at greater risk to develop the severe forms of the disease upon infection with any serotype of dengue virus (DENV). From these observations emerged the hypothesis of antibody-dependent enhancement (ADE) of disease severity, whereby maternally acquired anti-DENV antibodies cross-react but fail to neutralize DENV particles, resulting in higher viremia that correlates with increased disease severity. Although in vitro and in vivo experimental set ups have indirectly supported the ADE hypothesis, direct experimental evidence has been missing. Furthermore, a recent epidemiological study has challenged the influence of maternal antibodies in disease outcome. Here we have developed a mouse model of ADE where DENV2 infection of young mice born to DENV1-immune mothers led to earlier death which correlated with higher viremia and increased vascular leakage compared to DENV2-infected mice born to dengue naïve mothers. In this ADE model we demonstrated the role of TNF-α in DEN-induced vascular leakage. Furthermore, upon infection with an attenuated DENV2 mutant strain, mice born to DENV1-immune mothers developed lethal disease accompanied by vascular leakage whereas infected mice born to dengue naïve mothers did no display any clinical manifestation. In vitro ELISA and ADE assays confirmed the cross-reactive and enhancing properties towards DENV2 of the serum from mice born to DENV1-immune mothers. Lastly, age-dependent susceptibility to disease enhancement was observed in mice born to DENV1-immune mothers, thus reproducing epidemiological observations. Overall, this work provides direct in vivo demonstration of the role of maternally acquired heterotypic dengue antibodies in the enhancement of dengue disease severity and offers a unique opportunity to further decipher the mechanisms involved.


Asunto(s)
Anticuerpos Antivirales/inmunología , Dengue/inmunología , Inmunidad Materno-Adquirida , Animales , Cricetinae , Reacciones Cruzadas/inmunología , Dengue/patología , Modelos Animales de Enfermedad , Femenino , Ratones , Ratones Mutantes , Embarazo , Índice de Severidad de la Enfermedad , Factor de Necrosis Tumoral alfa/inmunología
2.
PLoS One ; 8(4): e61621, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23637867

RESUMEN

Dengue (DEN) is a mosquito-borne viral disease and represents a serious public health threat and an economical burden throughout the tropics. Dengue clinical manifestations range from mild acute febrile illness to severe DEN hemorrhagic fever/DEN shock syndrome (DHF/DSS). Currently, resuscitation with large volumes of isotonic fluid remains the gold standard of care for DEN patients who develop vascular leakage and shock. Here, we investigated the ability of small volume of hypertonic saline (HTS) suspensions to control vascular permeability in a mouse model of severe DEN associated with vascular leakage. Several HTS treatment regimens were considered and our results indicated that a single bolus of 7.5% NaCl at 4 mL per kg of body weight administered at the onset of detectable vascular leakage rapidly and significantly reduced vascular leak for several days after injection. This transient reduction of vascular leakage correlated with reduced intestine and liver damage with restoration of the hepatic functions, and resulted in delayed death of the infected animals. Mechanistically, we showed that HTS did not directly impact on the viral titers but resulted in lower immune cells counts and decreased systemic levels of soluble mediators involved in vascular permeability. In addition, we demonstrated that neutrophils do not play a critical role in DEN-associated vascular leakage and that the therapeutic effect of HTS is not mediated by its impact on the neutrophil counts. Together our data indicate that HTS treatment can transiently but rapidly reduce dengue-associated vascular leakage, and support the findings of a recent clinical trial which evaluated the efficacy of a hypertonic suspension to impact on vascular permeability in DSS children.


Asunto(s)
Permeabilidad Capilar/efectos de los fármacos , Dengue/tratamiento farmacológico , Solución Salina Hipertónica/administración & dosificación , Animales , Modelos Animales de Enfermedad , Mediadores de Inflamación/sangre , Ratones , Neutrófilos/fisiología , Solución Salina Hipertónica/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA