Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Pediatr Res ; 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762663

RESUMEN

BACKGROUND: Preterm birth disrupts fetal kidney development, potentially leading to postnatal acute kidney injury. Preterm infants are deficient in insulin-like growth factor 1 (IGF-1), a growth factor that stimulates organ development. By utilizing a preterm pig model, this study investigated whether IGF-1 supplementation enhances preterm kidney maturation. METHODS: Cesarean-delivered preterm pigs were treated systemically IGF-1 or vehicle control for 5, 9 or 19 days after birth. Blood, urine, and kidney tissue were collected for biochemical, histological and gene expression analyses. Age-matched term-born pigs were sacrificed at similar postnatal ages and served as the reference group. RESULTS: Compared with term pigs, preterm pigs exhibited impaired kidney maturation, as indicated by analyses of renal morphology, histopathology, and inflammatory and injury markers. Supplementation with IGF-1 reduced signs of kidney immaturity, particularly in the first week of life, as indicated by improved morphology, upregulated expression of key developmental genes, reduced severity and incidence of microscopic lesions, and decreased levels of inflammatory and injury markers. No association was seen between the symptoms of necrotizing enterocolitis and kidney defects. CONCLUSION: Preterm birth in pigs impairs kidney maturation and exogenous IGF-1 treatment partially reverses this impairment. Early IGF-1 supplementation could support the development of preterm kidneys. IMPACT: Preterm birth may disrupt kidney development in newborns, potentially leading to morphological changes, injury, and inflammation. Preterm pigs have previously been used as models for preterm infants, but not for kidney development. IGF-1 supplementation promotes kidney maturation and alleviates renal impairments in the first week of life in preterm pigs. IGF-1 may hold potential as a supportive therapy for preterm infants sensitive to acute kidney injury.

2.
Pediatr Res ; 95(1): 120-128, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37648745

RESUMEN

BACKGROUND: Preterm infants show low blood levels of insulin-like growth factor 1 (IGF-1), known to be negatively correlated with Interleukin-6 (IL-6). We hypothesized that circulating IGF-1 is associated with systemic immune-markers following preterm birth and that exogenous IGF-1 supplementation modulates immune development in preterm pigs, used as model for preterm infants. METHODS: Plasma levels of IGF-1 and 29 inflammatory markers were measured in very preterm infants (n = 221). In preterm pigs, systemic immune development, assessed by in vitro challenge, was compared between IGF-1 treated (2.25 mg/kg/day) and control animals. RESULTS: Preterm infants with lowest gestational age and birth weight showed the lowest IGF-1 levels, which were correlated not only with IL-6, but a range of immune-markers. IGF-1 supplementation to preterm pigs reduced plasma IL-10 and Interferon-γ (IFN-γ), IL-2 responses to challenge and reduced expression of genes related to Th1 polarization. In vitro addition of IGF-1 (100 ng/mL) further reduced the IL-2 and IFN-γ responses but increased IL-10 response. CONCLUSIONS: In preterm infants, plasma IGF-1 correlated with several immune markers, while supplementing IGF-1 to preterm pigs tended to reduce Th1 immune responses. Future studies should document whether IGF-1 supplementation to preterm infants affects immune development and sensitivity to infection. IMPACT: Supplementation of insulin-like growth factor 1 (IGF-1) to preterm infants has been proposed to promote postnatal growth, but its impact on the developing immune system is largely unknown. In a cohort of very preterm infants, low gestational age and birth weight were the primary predictors of low plasma levels of IGF-1, which in turn were associated with plasma immune markers. Meanwhile, in immature preterm pigs, experimental supplementation of IGF-1 reduced Th1-related immune responses in early life. Supplementation of IGF-1 to preterm infants may affect the developing immune system, which needs consideration when evaluating overall impact on neonatal health.


Asunto(s)
Recien Nacido Prematuro , Nacimiento Prematuro , Humanos , Recién Nacido , Lactante , Femenino , Animales , Porcinos , Peso al Nacer , Factor I del Crecimiento Similar a la Insulina/metabolismo , Interleucina-10 , Péptidos Similares a la Insulina , Interleucina-6 , Interleucina-2 , Edad Gestacional , Inmunidad , Biomarcadores
3.
Infection ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38775927

RESUMEN

BACKGROUND: For very preterm infants, human milk is often fortified with formula products based on processed bovine milk. Intact bovine colostrum (BC), rich in anti-inflammatory milk factors, is considered an alternative. We investigated if BC affects anti-inflammatory/TH2 immunity and infection risk in very preterm infants. METHODS: For a secondary analysis of a multicenter, randomized controlled trial (NCT03537365), very preterm infants (26-31 weeks gestation, 23% small for gestational age, SGA) were randomized to receive BC (ColoDan, Biofiber, Denmark, n = 113) or conventional fortifier (PreNAN, Nestlé, Switzerland, n = 116). Infection was defined as antibiotic treatment for five or more consecutive days and 29 cytokines/chemokines were measured in plasma before and after start of fortification. RESULTS: In general, infection risk after start of fortification was associated with low gestational age, SGA status and antibiotics use prior to fortification. Adjusted for confounders, infants fortified with BC showed more infection episodes (20 vs 12%, P < 0.05) and higher cumulative infection risk (hazard ratio, HR 1.9, P = 0.06), particularly for SGA infants (HR 3.6, P < 0.05). Additionally, BC-fortified infants had higher levels of TH2-related cytokines/chemokines (IL-10, MDC, MCP4) and reduced levels of cytokines related to TH1/TH17-responses (IL-15, IL-17, GM-CSF). The differences were most pronounced in SGA infants, displaying higher levels of TH2-related IL-4, IL-6, and IL-13, and lower interferon-γ and IL-1α levels in the BC group. CONCLUSION: Infants fortified with BC displayed a delayed shift from TH2- to TH1-biased systemic immunity, notably in SGA infants, possibly influenced by multiple confounding factors, alongside elevated antibiotic use, suggesting increased susceptibility to infection.

4.
Pediatr Res ; 94(2): 530-538, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36804504

RESUMEN

BACKGROUND: Most preterm infants receive antibiotics to prevent serious infections shortly after birth. However, prolonged antibiotic treatment predisposes to gut dysbiosis and late-onset sepsis. Using preterm pigs as model, we hypothesized that neonatal prophylactic antibiotics impair systemic immune development beyond the days of antibiotic treatment. METHODS: Preterm pigs (90% gestation) were fed formula for 9 days, treated with sterile water (CON) or enteral antibiotics from day 1 to 4. On days 5 and 9, blood was collected for haematology, in vitro LPS stimulation, and plasma proteomics. RESULTS: Antibiotic treatment altered the abundance of 21 and 47 plasma proteins on days 5 and 9, representing 6.6% and 14.8% of the total annotated proteins, respectively. Most antibiotics-induced proteome changes related to complement cascade, neutrophil degranulation, and acute phase responses. Neutrophil and lymphocyte counts were higher in antibiotics-treated pigs on day 5 but did not change from days 5-9, in contrast to increasing cell counts in CON. The antibiotics treatment suppressed TNF-alpha and IL-10 responses to in vitro LPS challenge on day 5, 7 and 9. CONCLUSION: Few days of antibiotics treatment following preterm birth alter the plasma proteome and inhibit systemic immune development, even beyond the days of treatment. IMPACT: 1. Neonatal prophylactic antibiotics alter the plasma proteome and suppress systemic immune development in preterm pigs 2. The effects of prophylactic antibiotics last beyond the days of treatment. 3. Neonatal antibiotics treatment for compromised human newborns may predispose to longer-term risks of impaired immunity and infections.


Asunto(s)
Nacimiento Prematuro , Femenino , Animales , Porcinos , Recién Nacido , Humanos , Nacimiento Prematuro/prevención & control , Animales Recién Nacidos , Proteoma , Lipopolisacáridos , Recien Nacido Prematuro , Antibacterianos
5.
Pediatr Res ; 91(5): 1113-1120, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34112973

RESUMEN

BACKGROUND: Necrotizing enterocolitis (NEC), a severe gut disorder in preterm infants, is difficult to predict due to poor specificity and sensitivity of clinical signs and biomarkers. Using preterm piglets as a model, we hypothesized that early development of NEC affects blood gene expression, potentially related to early systemic immune responses. METHODS: A retrospective analysis of clinical, tissue, and blood data was performed on 129 formula-fed piglets with NEC diagnosis at necropsy on day 5. Subgroups of NEC (n = 20) and control piglets (CON, n = 19) were analyzed for whole-blood transcriptome. RESULTS: Preterm piglets had variable NEC lesions, especially in the colon region, without severe clinical signs (e.g. normal growth, activity, hematology, digestion, few piglets with bloody stools). Transcriptome analysis showed 344 differentially expressed genes (DEGs) between NEC and CON piglets. Validation experiment showed that AOAH, ARG2, FKBP5, PAK2, and STAT3 were among the genes affected by severe lesions on day 5, when analyzed in whole blood and in dried blood spots (DBS). CONCLUSION: Whole-blood gene expressions may be affected in preterm pigs before clinical signs of NEC get severe. Blood gene expression analysis, potentially using DBS samples, is a novel tool to help identify new early biomarkers of NEC. IMPACT: Preterm pig model was used to investigate if blood transcriptomics could be used to identify new early blood biomarkers of NEC progression. Whole-blood transcriptome revealed upregulation of target genes in NEC cases when clinical symptoms are subtle, and mainly colon regions were affected. Differential NEC-associated gene expressions could be detected also in dried blood spots, potentially allowing easy collection of small blood volumes in infants.


Asunto(s)
Enterocolitis Necrotizante , Enfermedades del Recién Nacido , Animales , Animales Recién Nacidos , Biomarcadores , Enterocolitis Necrotizante/diagnóstico , Enterocolitis Necrotizante/genética , Enterocolitis Necrotizante/veterinaria , Humanos , Recién Nacido , Recien Nacido Prematuro , Estudios Retrospectivos , Porcinos , Transcriptoma
6.
Am J Physiol Gastrointest Liver Physiol ; 321(1): G18-G28, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34009048

RESUMEN

Preterm infants are at high risks of sepsis and necrotizing enterocolitis (NEC). Some develop sepsis shortly after suspected or confirmed NEC, implying that NEC may predispose to sepsis but the underlying mechanisms are unknown. Using NEC-sensitive preterm pigs as models, we investigated the immune status in animals following development of subclinical NEC-like lesions with variable severities. Caesarean-delivered preterm pigs were reared until day 5 or day 9. Blood was analyzed for T-cell subsets, neutrophil phagocytosis, transcriptomics, and immune responses to in vitro LPS challenge. Gut tissues were used for histology and cytokine analyses. Pigs with/without macroscopic NEC lesions were scored as healthy, mild, or severe NEC. Overall NEC incidence was similar on day 5 and day 9 (61%-62%) but with lower severity on day 9, implying gradual mucosal repair following the early phase of NEC. Pigs with NEC showed decreased goblet cell density and increased MPO+ and CD3+ cell infiltration in the distal small intestine or colon. Mild or severe NEC lesions had limited effects on circulating parameters on day 5. On day 9, pigs with NEC lesions (especially severe lesions) showed systemic immune suppression, as indicated by elevated Treg frequency, impaired neutrophil phagocytosis, low expression of genes related to innate immunity and Th1 polarization, and diminished LPS-induced immune responses. In conclusion, we shows evidence for NEC-induced systemic immune suppression, even with mild and subclinical NEC lesions. The results help to explain that preterm infants suffering from NEC may show high sensitivity to later secondary infections and sepsis.NEW & NOTEWORTHY Necrotizing enterocolitis (NEC) and sepsis are common diseases in preterm infants. Many develop sepsis following an episode of suspected NEC, suggesting NEC as a predisposing factor for sepsis but mechanisms are unclear. Using preterm pigs as a model, now we show that subclinical NEC lesions, independent of clinical confounding factors, induces systemic immune suppression. The results may help to explain the increased risks of infection and sepsis in preterm infants with previous NEC diagnosis.


Asunto(s)
Citocinas/metabolismo , Enterocolitis Necrotizante/metabolismo , Neutrófilos/inmunología , Sepsis/inmunología , Animales , Animales Recién Nacidos , Femenino , Neutrófilos/metabolismo , Embarazo , Nacimiento Prematuro , Riesgo , Sepsis/complicaciones , Porcinos
7.
FASEB J ; 34(2): 2896-2911, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31908027

RESUMEN

Chorioamnionitis (CA, fetal membrane inflammation) predisposes to preterm birth and is associated with increased neonatal infection risk, but the separate effects of prematurity, CA, and postnatal adaptations on this risk are unclear. Using pigs as models for infants, we examined the systemic immune-metabolic status in cesarean-delivered preterm pigs, with and without CA induced by intra-amniotic (IA) LPS exposure. At birth, cord blood of preterm pigs showed neutropenia and low expressions of innate and adaptive immune genes, relative to term pigs. IA LPS induced CA and fetal systemic innate immune activation via complement and neutrophil-related pathways. These were mainly modulated via cellular regulations rather than granulopoiesis, as validated by the in vitro LPS stimulation of cord blood. After birth, IA LPS-exposed preterm pigs did not follow normal immune-metabolic ontogenies found in fetuses or newborns without prenatal insults, but showed consistently high levels of Treg, impaired Th1 polarization, and reduced expressions of multiple genes related to cellular oxidative phosphorylation and ribosomal activities. In conclusion, our results provide cellular and molecular evidence for CA-induced distinct neonatal immune-metabolic status with increased disease tolerance strategy, suggesting mechanisms for the clinical observation of elevated sepsis risks in immune-compromised preterm infants born with CA.


Asunto(s)
Corioamnionitis/inmunología , Feto/inmunología , Familia de Multigenes/inmunología , Fosforilación Oxidativa , Células TH1/inmunología , Animales , Animales Recién Nacidos , Corioamnionitis/inducido químicamente , Corioamnionitis/patología , Modelos Animales de Enfermedad , Femenino , Feto/patología , Humanos , Recién Nacido , Inflamación/inducido químicamente , Inflamación/inmunología , Inflamación/patología , Lipopolisacáridos/toxicidad , Embarazo , Porcinos , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/patología , Células TH1/patología
8.
J Nutr ; 150(5): 1196-1207, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32069355

RESUMEN

BACKGROUND: Extrauterine growth restriction (EUGR) in preterm infants is associated with higher morbidity and impaired neurodevelopment. Early nutrition support may prevent EUGR in preterm infants, but it is not known if this improves organ development and brain function in the short and long term. OBJECTIVE: Using pigs as models for infants, we hypothesized that diet-induced EUGR impairs gut, immunity, and brain development in preterm neonates during the first weeks after birth. METHODS: Forty-four preterm caesarean-delivered pigs (Danish Landrace × Large White × Duroc, birth weight 975 ± 235 g, male:female ratio 23:21) from 2 sows were fed increasing volumes [32-180 mL/(kg·d)] of dilute bovine milk (EUGR group) or the same diet fortified with powdered bovine colostrum for 19 d (CONT group, 50-100% higher protein and energy intake than the EUGR group). RESULTS: The EUGR pigs showed reduced body growth (-39%, P < 0.01), lower plasma albumin, phosphate, and creatine kinase concentrations (-35 to 14%, P < 0.05), increased cortisol and free iron concentrations (+130 to 700%, P < 0.05), and reduced relative weights of the intestine, liver, and spleen (-38 to 19%, all P < 0.05). The effects of EUGR on gut structure, function, microbiota, and systemic immunity were marginal, although EUGR temporarily increased type 1 helper T cell (Th1) activity (e.g. more blood T cells and higher Th1-related cytokine concentrations on day 8) and reduced colon nutrient fermentation (lower SCFA concentration; -45%, P < 0.01). Further, EUGR pigs showed increased relative brain weights (+19%, P < 0.01), however, memory and learning, as tested in a spatial T-maze, were not affected. CONCLUSION: Most of the measured organ growth, and digestive, immune, and brain functions showed limited effects of diet-induced EUGR in preterm pigs during the first weeks after birth. Likewise, preterm infants may show remarkable physiological adaptation to deficient nutrient supply during the first weeks of life although early life malnutrition may exert negative consequences later.


Asunto(s)
Animales Recién Nacidos/crecimiento & desarrollo , Encéfalo/crecimiento & desarrollo , Tracto Gastrointestinal/crecimiento & desarrollo , Inmunidad/fisiología , Necesidades Nutricionales , Sus scrofa/crecimiento & desarrollo , Animales , Calostro , Femenino , Microbioma Gastrointestinal , Tracto Gastrointestinal/anatomía & histología , Edad Gestacional , Humanos , Fenómenos Fisiológicos Nutricionales del Lactante , Recién Nacido , Recien Nacido Prematuro/crecimiento & desarrollo , Masculino , Leche , Modelos Animales , Apoyo Nutricional , Valor Nutritivo
9.
Am J Physiol Gastrointest Liver Physiol ; 317(1): G67-G77, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31091150

RESUMEN

Prenatal inflammation may predispose to preterm birth and postnatal inflammatory disorders such as necrotizing enterocolitis (NEC). Bioactive milk ingredients may help to support gut maturation in such neonates, but mother's milk is often insufficient after preterm birth. We hypothesized that supplementation with bioactive ingredients from bovine milk [osteopontin (OPN), caseinoglycomacropeptide (CGMP), colostrum (COL)] supports gut, immunity, and NEC resistance in neonates born preterm after gram-negative infection before birth. Using preterm pigs as a model for preterm infants, fetal pigs were given intraamniotic injections of lipopolysaccharide (LPS; 1 mg/fetus) and delivered 3 days later (90% gestation). For 5 days, groups of LPS-exposed pigs were fed formula (FOR), bovine colostrum (COL), or formula enriched with OPN or CGMP. LPS induced intraamniotic inflammation and postnatal systemic inflammation but limited effects on postnatal gut parameters and NEC. Relative to FOR, COL feeding to LPS-exposed pigs showed less diarrhea, NEC severity, reduced gut IL-1ß and IL-8 levels, greater gut goblet cell density and digestive enzyme activities, and blood helper T-cell fraction. CGMP improved neonatal arousal and gut lactase activities and reduced LPS-induced IL-8 secretion in intestinal epithelial cells (IECs) in vitro. Finally, OPN tended to reduce diarrhea and stimulated IEC proliferation in vitro. No effects on villus morphology, circulating cytokines, or colonic microbiota were observed among groups. In conclusion, bioactive milk ingredients exerted only modest effects on gut and systemic immune parameters in preterm pigs exposed to prenatal inflammation. Short-term, prenatal exposure to inflammation may render the gut less sensitive to immune-modulatory milk effects. NEW & NOTEWORTHY Prenatal inflammation is a risk factor for preterm birth and postnatal complications including infections. However, from clinical studies, it is difficult to separate the effects of only prenatal inflammation from preterm birth. Using cesarean-delivered preterm pigs with prenatal inflammation, we documented some beneficial gut effects of bioactive milk diets relative to formula, but prenatal inflammation appeared to decrease the sensitivity of enteral feeding. Special treatments and diets may be required for this neonatal population.


Asunto(s)
Caseínas/administración & dosificación , Corioamnionitis/dietoterapia , Enterocolitis Necrotizante/prevención & control , Alimentos Fortificados , Inmunidad Mucosa , Fórmulas Infantiles , Intestinos/inmunología , Osteopontina/administración & dosificación , Fragmentos de Péptidos/administración & dosificación , Nacimiento Prematuro , Animales , Animales Recién Nacidos , Caseínas/inmunología , Línea Celular , Corioamnionitis/inducido químicamente , Corioamnionitis/inmunología , Corioamnionitis/metabolismo , Calostro/inmunología , Modelos Animales de Enfermedad , Enterocolitis Necrotizante/etiología , Enterocolitis Necrotizante/inmunología , Enterocolitis Necrotizante/metabolismo , Células Epiteliales/inmunología , Células Epiteliales/metabolismo , Femenino , Microbioma Gastrointestinal , Edad Gestacional , Humanos , Recién Nacido , Absorción Intestinal , Intestinos/microbiología , Intestinos/patología , Lipopolisacáridos , Valor Nutritivo , Osteopontina/inmunología , Fragmentos de Péptidos/inmunología , Permeabilidad , Embarazo , Sus scrofa
10.
Am J Pathol ; 188(11): 2629-2643, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30314768

RESUMEN

Prenatal inflammation is a major risk for preterm birth and neonatal morbidity, but its effects on postnatal immunity and organ functions remain unclear. Using preterm pigs as a model for preterm infants, we investigated whether prenatal intra-amniotic (IA) inflammation modulates postnatal systemic immune status and organ functions. Preterm pigs exposed to IA lipopolysaccharide (LPS) for 3 days were compared with controls at birth and postnatal day 5 after formula feeding. IA LPS induced mild chorioamnionitis but extensive intra-amniotic inflammation. There were minor systemic effects at birth (increased blood neutrophil counts), but a few days later, prenatal LPS induced delayed neonatal arousal, systemic inflammation (increased blood leukocytes, plasma cytokines, and splenic bacterial counts), altered serum biochemistry (lower albumin and cholesterol and higher iron and glucose values), and increased urinary protein and sodium excretion. In the gut and lungs, IA LPS-induced inflammatory responses were observed mainly at birth (increased LPS, CXCL8, and IL-1ß levels and myeloperoxidase-positive cell density, multiple increases in innate immune gene expressions, and reduced villus heights), but not on postnatal day 5 (except elevated lung CXCL8 and diarrhea symptoms). Finally, IA LPS did not affect postnatal gut brush-border enzymes, hexose absorption, permeability, or sensitivity to necrotizing enterocolitis on day 5. Short-term IA LPS exposure predisposes preterm pigs to postnatal systemic inflammation after acute fetal gut and lung inflammatory responses.


Asunto(s)
Corioamnionitis/inmunología , Endotoxinas/toxicidad , Feto/inmunología , Tracto Gastrointestinal/inmunología , Inflamación/inmunología , Pulmón/inmunología , Animales , Animales Recién Nacidos , Corioamnionitis/inducido químicamente , Corioamnionitis/patología , Femenino , Feto/efectos de los fármacos , Feto/patología , Tracto Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/patología , Inflamación/inducido químicamente , Inflamación/patología , Pulmón/efectos de los fármacos , Pulmón/patología , Embarazo , Nacimiento Prematuro , Porcinos
11.
J Nutr ; 149(1): 36-45, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30608604

RESUMEN

Background: Preterm infants are born with an immature gut, brain, and immune system, predisposing them to short- and long-term complications. Objective: We hypothesized that a milk diet supplemented with pre- and probiotics (i.e. synbiotics) and glutamine would improve gut, brain, and immune maturation in preterm neonates, using preterm pigs as a model. Methods: Preterm pigs (Landrace x Yorkshire x Duroc, n = 40, delivered by c-section at 90% of gestation) were reared individually until day 23 after birth under highly standardized conditions. Piglets in the intervention group (PPG, n = 20) were fed increasing volumes of bovine milk supplemented with prebiotics (short-chain galacto- and long chain fructo-oligosaccharides 9:1, 4-12 g/L), probiotics (Bifidobacterium breve M16-V, 3 × 109 CFU/d) and l-glutamine [0.15-0.30 g/(kg · d)], and compared with pigs fed bovine milk with added placebo compounds as control (CON, n = 20). Clinical, gastrointestinal, immunological, cognitive, and neurological endpoints were measured. Results: The PPG pigs showed more diarrhea but weight gain, body composition, and gut parameters were similar between the groups. Cognitive performance, assessed in a T-maze, was significantly higher in PPG pigs (P < 0.01), whereas motor function and exploratory interest were similar between the groups. Using ex vivo diffusion imaging, the orientation dispersion index in brain cortical gray matter was 50% higher (P = 0.04), and fractional anisotropy value was 7% lower (P = 0.05) in PPG pigs compared with CON pigs, consistent with increased dendritic branching in PPG. In associative fibers, radial diffusivity was lower and fractional anisotropy was higher in PPG pigs compared with CON pigs (all P < 0.05), while measures in the internal capsule showed a tendency towards reduced radial diffusivity and mean diffusivity (both P = 0.09). On day 23 pigs in the PPG group showed higher blood leukocyte numbers (+43%), neutrophil counts (+100%), and phagocytic rates (+24%), relative to CON, all P < 0.05. Conclusion: Preterm pigs supplemented with Bifidobacterium breve, galacto- and fructo-oligosaccharides, and l-glutamine showed enhanced neuronal and immunological development. The findings indicate the potential for targeted nutritional interventions after preterm birth, to support development of important systems such as immunity and brain.


Asunto(s)
Animales Recién Nacidos , Encéfalo/efectos de los fármacos , Encéfalo/crecimiento & desarrollo , Glutamina/farmacología , Nacimiento Prematuro , Porcinos/crecimiento & desarrollo , Simbióticos/administración & dosificación , Animales , Ácidos Grasos , Microbioma Gastrointestinal , Glutamina/química
12.
Am J Physiol Gastrointest Liver Physiol ; 315(5): G855-G867, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30118350

RESUMEN

Preterm infants have immature organ functions that predispose them to gut and immune disorders. Developmental delays at preterm birth may affect various organs differently at term-corrected age. We hypothesized that gut and immune maturation in moderately preterm neonates depends more on birth and postnatal factors than on advancing postconceptional age (PCA). Using preterm pigs as models, we investigated how gut and immune parameters develop until term-corrected age and how these differ from those in term counterparts. Preterm ( n = 43, 106 days of gestation) and term pigs ( n = 41, 116 days of gestation) were delivered by caesarean section and euthanized at birth ( day 1) or postnatal day 11 (term-corrected age for preterm pigs) using identical rearing conditions. Relative to term pigs, preterm pigs had lower blood oxygenation, glucose, and cortisol levels, lower gut lactase activity, villus height, and goblet cell density, and lower blood neutrophil, helper T, and cytotoxic T cell numbers at birth. Despite slower growth in preterm pigs, most intestinal and immune parameters increased markedly after birth in both groups. However, some parameters remained negatively affected by preterm birth until postnatal day 11 (goblet cells, gut permeability, and cytotoxic T cells). The colon microbiota showed limited differences between preterm and term pigs at this time. At the same PCA, preterm 11-day-old pigs had higher blood leukocyte numbers and gut enzyme activities but lower villus height and blood cytotoxic T cell numbers relative to newborn term pigs. Birth and postnatal factors, not advancing PCA, are key determinants of gut and immune maturation in moderately preterm neonates. NEW & NOTEWORTHY Postnatally, preterm infants are often considered to reach a physiological maturation similar to that in term infants when they reach term-corrected postconceptional age (PCA). Using preterm pigs as models, we show that PCA may be a poor measure of gut and immune maturation because environmental triggers (regardless of PCA at birth) are critical. Possibly, PCA is only relevant to evaluate physiological maturation of organs that develop relatively independent of the external environment (e.g., the brain).


Asunto(s)
Enterocolitis Necrotizante/etiología , Desarrollo Fetal , Sistema Inmunológico/crecimiento & desarrollo , Intestinos/crecimiento & desarrollo , Animales , Animales Recién Nacidos , Glucemia/análisis , Femenino , Células Caliciformes/citología , Hidrocortisona/sangre , Sistema Inmunológico/embriología , Sistema Inmunológico/inmunología , Intestinos/embriología , Intestinos/inmunología , Embarazo , Porcinos , Linfocitos T/inmunología
13.
J Nutr ; 148(3): 336-347, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29462356

RESUMEN

Background: Nutrient fortification of human milk is often required to secure adequate growth and organ development for very preterm infants. There is concern that formula-based fortifiers (FFs) induce intestinal dysfunction, feeding intolerance, and necrotizing enterocolitis (NEC). Bovine colostrum (BC) may be an alternative nutrient fortifier, considering its high content of protein and milk bioactive factors. Objective: We investigated whether BC was superior to an FF product based on processed bovine milk and vegetable oil to fortify donor human milk (DHM) for preterm pigs, used as a model for infants. Methods: Sixty preterm pigs from 4 sows (Danish Landrace × Large White × Duroc, birth weight 944 ± 29 g) received decreasing volumes of parenteral nutrition (96-72 mL â‹… kg-1 â‹… d-1) and increasing volumes of enteral nutrition (24-132 mL â‹… kg-1 â‹… d-1) for 8 d. Pigs were fed donor porcine milk (DPM) and DHM with or without FF or BC fortification (+4.6 g protein â‹… kg-1 â‹… d-1). Results: DPM-fed pigs showed higher growth (10-fold), protein synthesis (+15-30%), villus heights, lactase and peptidase activities (+30%), and reduced intestinal cytokines (-50%) relative to DHM pigs (all P < 0.05). Fortification increased protein synthesis (+20-30%), but with higher weight gain and lower urea and cortisol concentrations for DHM+BC compared with DHM+FF pigs (2- to 3-fold differences, all P ≤ 0.06). DHM+FF pigs showed more diarrhea and reduced lactase and peptidase activities, hexose uptake, and villus heights relative to DHM+BC or DHM pigs (30-90% differences, P < 0.05). Fortification did not affect NEC incidence but DHM+BC pigs had lower colonic interleukin (IL)-6 and IL-8 concentrations relative to the remaining pigs (-30%, P = 0.06). DHM+FF pigs had higher stomach bacterial load than did DHM, and higher bacterial density along intestinal villi than did DHM and DHM+BC pigs (2- to 3-fold, P < 0.05). Conclusions: The FF product investigated in this study reduced growth, intestinal function, and protein utilization in DHM-fed preterm pigs, relative to BC as fortifier. The relevance of BC as an alternative nutrient fortifier for preterm infants should be tested.


Asunto(s)
Calostro , Dieta , Proteínas en la Dieta/metabolismo , Alimentos Fortificados , Intestinos/crecimiento & desarrollo , Leche Humana , Nacimiento Prematuro , Animales , Bovinos , Enterocolitis Necrotizante/etiología , Enterocolitis Necrotizante/prevención & control , Femenino , Humanos , Recién Nacido , Recien Nacido Prematuro , Interleucinas/metabolismo , Mucosa Intestinal , Intestinos/microbiología , Masculino , Leche , Nutrientes , Apoyo Nutricional , Aceites de Plantas , Embarazo , Biosíntesis de Proteínas , Porcinos
14.
J Pediatr Gastroenterol Nutr ; 66(1): 128-134, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28753186

RESUMEN

OBJECTIVE: Formula feeding is associated with compromised intestinal health in preterm neonates compared with maternal milk, but the mechanisms behind this are unclear. We hypothesized that the use of maltodextrin and whey protein concentrates (WPCs) with reduced bioactivity owing to thermal processing are important factors. METHOD: Ninety-two cesarean-delivered preterm pigs were fed increasing doses of formulas for 5 days (24-120 mL ·â€Škg ·â€Šday). In experiment 1, 4 groups of pigs (n = 15-16) were fed lactose- or maltodextrin-dominant formulas (lactose/maltodextrin ratios 3:1 or 1:3, respectively), containing WPC with either high or low levels of IgG (WPC1 or WPC2, respectively). In experiment 2, 2 groups of pigs (n = 15-16) were fed lactose-dominant formulas with either a bioactive WPC (BioWPC, produced by reduced thermal-processing) or a conventional WPC (ConWPC). RESULTS: In experiment 1, pigs fed formula with WPC1 had higher villi, hexose absorption, and lactase activity in small intestine, relative to WPC2, but predominantly with the lactose-dominant formula (all P < 0.05). In experiment 2, the BioWPC product had higher bioactivity, as indicated by higher IgG, lactoferrin, and TGF-ß2 levels, and better enterocyte proliferation in vitro. Pigs fed the BioWPC formula showed better feeding tolerance and higher intestinal villi and lactase activity (all P < 0.05). The BioWPC formula-fed pigs also had greater physical activity (P < 0.05 on day 4) and tended to show improved hexose absorption and decreased gut permeability (both P ≤ 0.09). CONCLUSIONS: Infant formulas containing lactose as the main carbohydrate, and WPC with reduced thermal processing, may support gut maturation and health in sensitive, preterm neonates.


Asunto(s)
Fórmulas Infantiles/química , Intestinos/fisiología , Lactosa , Polisacáridos , Proteína de Suero de Leche , Animales , Animales Recién Nacidos , Humanos , Recién Nacido , Recien Nacido Prematuro , Porcinos
15.
J Nutr ; 147(6): 1121-1130, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28298536

RESUMEN

Background: Holder pasteurization (HP) destroys multiple bioactive factors in donor human milk (DM), and UV-C irradiation (UVC) is potentially a gentler method for pasteurizing DM for preterm infants.Objective: We investigated whether UVC-treated DM improves gut maturation and resistance toward bacterial infections relative to HP-treated DM.Methods: Bacteria, selected bioactive components, and markers of antioxidant capacity were measured in unpasteurized donor milk (UP), HP-treated milk, and UVC-treated milk (all from the same DM pool). Fifty-seven cesarean-delivered preterm pigs (91% gestation; ratio of males to females, 30:27) received decreasing volumes of parental nutrition (average 69 mL · kg-1 · d-1) and increasing volumes of the 3 DM diets (n = 19 each, average 89 mL · kg-1 · d-1) for 8-9 d. Body growth, gut structure and function, and systemic bacterial infection were evaluated.Results: A high bacterial load in the UP (6×105 colony forming units/mL) was eliminated similarly by HP and UVC treatments. Relative to HP-treated milk, both UVC-treated milk and UP showed greater activities of lipase and alkaline phosphatase and concentrations of lactoferrin, secretory immunoglobulin A, xanthine dehydrogenase, and some antioxidant markers (all P < 0.05). The pigs fed UVC-treated milk and pigs fed UP showed higher relative weight gain than pigs fed HP-treated milk (5.4% and 3.5%), and fewer pigs fed UVC-treated milk had positive bacterial cultures in the bone marrow (28%) than pigs fed HP-treated milk (68%) (P < 0.05). Intestinal health was also improved in pigs fed UVC-treated milk compared with those fed HP-treated milk as indicated by a higher plasma citrulline concentration (36%) and villus height (38%) (P < 0.05) and a tendency for higher aminopeptidase N (48%) and claudin-4 (26%) concentrations in the distal intestine (P < 0.08). The gut microbiota composition was similar among groups except for greater proportions of Enterococcus in pigs fed UVC-treated milk than in pigs fed UP and those fed HP-treated milk in both cecum contents (20% and 10%) and distal intestinal mucosa (24% and 20%) (all P < 0.05).Conclusions: UVC is better than HP treatment in preserving bioactive factors in DM. UVC-treated milk may induce better weight gain, intestinal health, and resistance against bacterial infections as shown in preterm pigs as a model for DM-fed preterm infants.


Asunto(s)
Infecciones Bacterianas/prevención & control , Dieta , Irradiación de Alimentos/métodos , Edad Gestacional , Intestinos/crecimiento & desarrollo , Leche Humana/efectos de la radiación , Aumento de Peso , Animales , Animales Recién Nacidos , Antioxidantes/metabolismo , Factores Biológicos/análisis , Médula Ósea/microbiología , Enterococcus/crecimiento & desarrollo , Femenino , Microbioma Gastrointestinal , Humanos , Inmunoglobulina A Secretora/análisis , Recién Nacido , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Intestinos/microbiología , Masculino , Leche Humana/química , Leche Humana/enzimología , Pasteurización/métodos , Porcinos , Rayos Ultravioleta
16.
Am J Physiol Gastrointest Liver Physiol ; 310(5): G323-33, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26680737

RESUMEN

Preterm infants are susceptible to infection and necrotizing enterocolitis (NEC) and are often treated with antibiotics. Simultaneous administration of enteral and parenteral antibiotics during the first days after preterm birth prevents formula-induced NEC lesions in pigs, but it is unknown which administration route is most effective. We hypothesized that only enteral antibiotics suppress gut bacterial colonization and NEC progression in formula-fed preterm pigs. Caesarean-delivered preterm pigs (90-92% of gestation) were fed increasing amounts of infant formula from birth to day 5 and given saline (CON) or antibiotics (ampicillin, gentamicin, and metronidazole) via the enteral (ENT) or parenteral (PAR) route (n = 16-17). NEC lesions, intestinal morphology, function, microbiology, and inflammatory mediators were evaluated. NEC lesions were completely prevented in ENT pigs, whereas there were high incidences of mild NEC lesions (59-63%) in CON and PAR pigs (P < 0.001). ENT pigs had elevated intestinal weight, villus height/crypt depth ratio, and goblet cell density and reduced gut permeability, mucosal adherence of bacteria, IL-8 levels, colonic lactic acid levels, and density of Gram-positive bacteria, relative to CON pigs (P < 0.05). Values in PAR pigs were intermediate with few affected parameters (reduced lactic acid levels and density and adherence of Gram-positive bacteria, relative to CON pigs, P < 0.05). There was no evidence of increased antimicrobial resistance following the treatments. We conclude that enteral, but not parenteral, administration of antibiotics reduces gut bacterial colonization, inflammation, and NEC lesions in newborn, formula-fed preterm pigs. Delayed colonization may support intestinal structure, function, and immunity in the immediate postnatal period of formula-fed preterm neonates.


Asunto(s)
Ampicilina/administración & dosificación , Enterocolitis Necrotizante , Microbioma Gastrointestinal/efectos de los fármacos , Gentamicinas/administración & dosificación , Intestinos , Metronidazol/administración & dosificación , Ampicilina/farmacocinética , Animales , Animales Recién Nacidos , Antibacterianos/administración & dosificación , Antibacterianos/farmacocinética , Disponibilidad Biológica , Modelos Animales de Enfermedad , Enterocolitis Necrotizante/etiología , Enterocolitis Necrotizante/prevención & control , Femenino , Gentamicinas/farmacocinética , Bacterias Grampositivas/efectos de los fármacos , Bacterias Grampositivas/aislamiento & purificación , Bacterias Grampositivas/fisiología , Fórmulas Infantiles/administración & dosificación , Infusiones Intraarteriales/métodos , Intestinos/microbiología , Intestinos/patología , Intestinos/fisiopatología , Intubación Gastrointestinal/métodos , Metronidazol/farmacocinética , Embarazo , Nacimiento Prematuro , Porcinos , Resultado del Tratamiento
17.
J Dairy Sci ; 99(2): 959-969, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26709184

RESUMEN

Whey protein concentrate (WPC) is often subjected to heat treatment during industrial processing, resulting in protein denaturation and loss of protein bioactivity. We hypothesized that WPC samples subjected to different degrees of thermal processing are associated with different levels of bioactive proteins and effects on proliferation and immune response in intestinal epithelial cells (IEC). The results showed that low-heat-treated WPC had elevated levels of lactoferrin and transforming growth factor-ß2 compared with that of standard WPC. The level of aggregates depended on the source of whey, with the lowest level being found in WPC derived from acid whey. Following acid activation, WPC from acid whey enhanced IEC proliferation compared with WPC from sweet whey or nonactivated WPC. Low-heat-treated WPC from acid whey induced greater secretion of IL-8 in IEC than either standard WPC from acid whey or low-heat-treated WPC from sweet whey. Following acid activation (to activate growth factors), low-heat-treated WPC from sweet whey induced higher IL-8 levels in IEC compared with standard WPC from sweet whey. In conclusion, higher levels of bioactive proteins in low-heat-treated WPC, especially from acid whey, may enhance proliferation and cytokine responses of IEC. These considerations could be important to maintain optimal bioactivity of infant formulas, including their maturational and immunological effects on the developing intestine.


Asunto(s)
Células Epiteliales/inmunología , Células Epiteliales/fisiología , Manipulación de Alimentos/métodos , Calor , Intestinos/citología , Suero Lácteo/química , Animales , Proliferación Celular , Citocinas , Interleucina-8/metabolismo , Intestinos/inmunología , Lactoferrina , Proteínas de la Leche/inmunología , Proteínas de la Leche/farmacología , Gusto , Suero Lácteo/fisiología , Proteína de Suero de Leche/inmunología , Proteína de Suero de Leche/farmacología
18.
Am J Physiol Gastrointest Liver Physiol ; 307(7): G689-99, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25147235

RESUMEN

A balance between pro- and anti-inflammatory signals from milk and microbiota controls intestinal homeostasis just after birth, and an optimal balance is particularly important for preterm neonates that are sensitive to necrotizing enterocolitis (NEC). We suggest that the intestinal cytokine IL-8 plays an important role and hypothesize that transforming growth factor-ß2 (TGF-ß2) acts in synergy with bacterial lipopolysaccharide (LPS) to control IL-8 levels, thereby supporting intestinal homeostasis. Preterm pigs were fed colostrum (containing TGF-ß2) or infant formula (IF) with or without antibiotics (COLOS, n = 27; ANTI, n = 11; IF, n = 40). Intestinal IL-8 levels and NEC incidence were much higher in IF than in COLOS and ANTI pigs (P < 0.001), but IL-8 levels did not correlate with NEC severity. Intestinal TGF-ß2 levels were high in COLOS but low in IF and ANTI pigs. Based on these observations, the interplay among IL-8, TGF-ß2, and LPS was investigated in a porcine intestinal epithelial cell line. TGF-ß2 attenuated LPS-induced IL-6, IL-1ß, and TNF-α release by reducing early ERK activation, whereas IL-8 secretion was synergistically induced by LPS and TGF-ß2 via NF-κB. The TGF-ß2/LPS-induced IL-8 levels stimulated cell proliferation and migration following epithelial injury, without continuous NF-κB activation and cyclooxygenase-2 expression. We suggest that a combined TGF-ß2-LPS induction of IL-8 stimulates epithelial repair just after birth when the intestine is first exposed to colonizing bacteria and TGF-ß2-containing milk. Moderate IL-8 levels may act to control intestinal inflammation, whereas excessive IL-8 production may enhance the damaging proinflammatory cascade leading to NEC.


Asunto(s)
Enterocolitis Necrotizante/metabolismo , Interleucina-8/metabolismo , Intestino Delgado/metabolismo , Lipopolisacáridos/farmacología , Factor de Crecimiento Transformador beta2/metabolismo , Animales , Antibacterianos/farmacología , Línea Celular , Movimiento Celular , Proliferación Celular , Calostro , Modelos Animales de Enfermedad , Enterocolitis Necrotizante/inmunología , Enterocolitis Necrotizante/microbiología , Enterocolitis Necrotizante/patología , Enterocolitis Necrotizante/prevención & control , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Edad Gestacional , Homeostasis , Humanos , Fórmulas Infantiles , Recién Nacido , Interleucina-8/farmacología , Intestino Delgado/efectos de los fármacos , Intestino Delgado/crecimiento & desarrollo , Intestino Delgado/inmunología , Intestino Delgado/microbiología , Intestino Delgado/patología , FN-kappa B/metabolismo , Nacimiento Prematuro , Transducción de Señal/efectos de los fármacos , Porcinos , Factores de Tiempo , Factor de Crecimiento Transformador beta2/farmacología
19.
Br J Nutr ; 111(2): 321-31, 2014 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-23915638

RESUMEN

Bioactive milk proteins may be important in protecting preterm infants from developing inflammation and necrotising enterocolitis (NEC). A preterm pig model was used to investigate the protective effects of enteral bovine lactoferrin (bLF) against NEC development and inflammation. Caesarean-delivered preterm pigs were fed parenteral and minimal enteral nutrition for the first 2 d followed by 2 d of total enteral nutrition before euthanasia. Pigs were stratified into two groups and fed with either a control formula (CON, n 15) or a 10 g/l of bLF-enriched formula (LF, n 13). NEC incidence, gut functions and inflammatory cytokines were analysed. NEC incidence and nutrient absorption were similar between the two groups. In pigs that developed NEC, disease outcome was more severe in the colon accompanied by increased intestinal permeability in LF pigs. In contrary, the LF pigs had a lowered IL-1ß level in the proximal small intestine. Dose-dependent effects of bLF on cell proliferation, intracellular signalling and cytokine secretion were tested in porcine intestinal epithelial cells (PsIc1) in vitro. Low doses (0·1-1 g/l) increased cell proliferation via extracellular signal-regulated kinase (ERK), limited IL-8 secretion and prevented NF-κB and hypoxia-inducible factor-1α (HIF-1α) activation, suggesting anti-inflammatory effects. In contrast, at a higher dose (10 g/l), bLF exerted adverse effects by reducing cell proliferation, stimulating IL-8 release, inhibiting ERK activation and up-regulating NF-κB and HIF-1α activation. Overall, at a dose of 10 g/l, bLF exacerbated disease severity in pigs that developed NEC, while the in vitro studies indicated the positive effects of bLF at low doses (0·1-1 g/l). Supplementation of infant formulas with bLF should therefore be optimised carefully.


Asunto(s)
Intestinos/efectos de los fármacos , Lactoferrina/farmacología , Porcinos/fisiología , Animales , Glucemia , Bovinos , Proliferación Celular , Citocinas/genética , Citocinas/metabolismo , Enterocolitis Necrotizante/inducido químicamente , Enterocolitis Necrotizante/veterinaria , Femenino , Regulación de la Expresión Génica , Insulina , Mucosa Intestinal/patología , Mucosa Intestinal/fisiología , Intestinos/citología , Intestinos/fisiología , Lipopolisacáridos , Embarazo , Nacimiento Prematuro
20.
J Nutr Biochem ; 131: 109674, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38825026

RESUMEN

Arginine (ARG)/Citrulline (CIT) deficiency is associated with increased sepsis severity after infection. Supplementation of CIT to susceptible patients with ARG/CIT deficiency such as preterm newborns with suspected infection might prevent sepsis, via maintaining immune and vascular function. Caesarean-delivered, parenterally nourished preterm pigs were treated with CIT (1g/kg bodyweight) via oral or continuous intravenous supplementation, then inoculated with live Staphylococcus epidermidis and clinically monitored for 14 h. Blood, liver, and spleen samples were collected for analysis. In vitro cord blood stimulation was performed to explore how CIT and ARG affect premature blood cell responses. After infection, oral CIT supplementation led to higher mortality, increased blood bacterial load, and systemic and hepatic inflammation. Intravenous CIT administration showed increased inflammation and bacterial burdens without significantly affecting mortality. Liver transcriptomics and data from in vitro blood stimulation indicated that CIT induces systemic immunosuppression in preterm newborns, which may impair resistance response to bacteria at the early stage of infection, subsequently causing later uncontrollable inflammation and tissue damage. The early stage of CIT supplementation exacerbates sepsis severity in infected preterm pigs, likely via inducing systemic immunosuppression.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA