Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Appl Opt ; 62(2): 455-462, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36630246

RESUMEN

III-nitride nanowire (NW) LEDs have been intensively studied for several emerging applications. However, the performance of these LEDs is still limited due to many factors. A leakage current may cause idle power consumption and affect the reliability and luminescence efficiency of the devices. Hence, it is one of the most important limiting factors from an application point of view. In this context, we have experimentally observed temperature-dependent forward and reverse leakage current-voltage characteristics of InGaN/AlGaN NW-based red microLEDs. The characteristic curves are fitted using different constant parameters such as the space charge term, zero bias current, and the characteristic energy. They are found to have error bars of less than 10%. The extra space charge term is believed to be due to inherent space charges trapped with the NWs and presents at every instance of the operation of the diode. The characteristic energy and ideality factors are compared to the reported values. An Arrhenius plot is used to calculate the thermal activation energy in the high- and low-temperature regions for both bias conditions. Our results show that the voltage-dependent activation energy is found to be about double in the case of the forward bias compared to that of the reverse bias in all voltage ranges. However, in a high voltage regime, the magnitudes of these parameters are almost four and six times greater for the forward and reverse biases, respectively, compared to those in the lower voltage regions. This study presents vital insight into the design and fabrication of high-performance NW-based LEDs.

2.
Nanotechnology ; 34(7)2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36399780

RESUMEN

In this study, multilevel switching at low-power in Ti/TiN/Ga2O3/Ti/Pt resistive random-access memory (RRAM) devices has been systematically studied. The fabricated RRAM device exhibits an excellent non-overlapping window between set and reset voltages of ∼1.1 V with a maximumRoff/Ronratio of ∼103. Moreover, to the best of our knowledge, the multi-bit storage capability of these RRAM devices with a reasonably highRoff/Ronratio is experimentally demonstrated, for the first time, for lower compliance currents at 10µA, 20µA and 50µA. The multi-bit resistive switching behavior of the Ga2O3RRAM device at a low compliance current paves the way for low-power and high-density data storage applications.

3.
Appl Opt ; 61(16): 4967-4970, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36255983

RESUMEN

The formation of positive sheet polarization charges at the interface of the last quantum barrier (QB) and the conventional p-type electron-blocking layer (EBL) creates significant band bending, leading to severe electron leakage and poor hole injection in III-nitride light-emitting diodes. We report that the positive sheet polarization charges are mitigated by employing a lattice matched AlGaN last QB. Electron leakage is dramatically reduced due to the increased effective conduction band height at the last QB and EBL. Furthermore, it favors hole injection into the active region due to the reduced effective valance band height for EBL.

4.
Appl Opt ; 61(30): 8951-8958, 2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36607020

RESUMEN

This paper presents alternate pairs of InGaN/GaN prestrained layers with varying indium compositions, which are inserted between the GaN/InGaN MQW active region and the n-GaN layer in a light-emitting diode (LED) nanostructure in order to obtain enhanced optical characteristics. The device is mounted on a silicon substrate followed by a GaN buffer layer that promotes charge injection by minimizing the energy barrier between the electrode and active layers. The designed device attains more than 2.897% enhancement in efficiency when compared with the conventional LED, which is attributed to the reduction of a polarization field within the MQW region. The proposed device with 15% indium composition in the prestrained layer attains a maximum efficiency of 85.21% and a minimized efficiency droop of 3.848% at an injection current of 40 mA, with high luminous power in the output spectral range. The device also shows a minimum blueshift in the spectral range, indicating a decrease in the piezoelectric polarization.

5.
Appl Opt ; 60(11): 3088-3093, 2021 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-33983204

RESUMEN

Electron overflow from the active region confines the AlGaN deep-ultraviolet (UV) light-emitting diode (LED) performance. This paper proposes a novel approach to mitigate the electron leakage problem in AlGaN deep-UV LEDs using concave quantum barrier (QB) structures. The proposed QBs suppress the electron leakage by significantly reducing the electron mean free path that improves the electron capturing capability in the active region. Overall, such an engineered structure also enhances the hole injection into the active region, thereby enhancing the radiative recombination in the quantum wells. As a result, our study shows that the proposed structure exhibits an optical power of 9.16 mW at ∼284nm wavelength, which is boosted by ∼40.5% compared to conventional AlGaN UV LED operating at 60 mA injection current.

6.
Opt Express ; 28(1): 665-675, 2020 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-32118989

RESUMEN

We investigated the effect of coupled quantum wells to reduce electron overflow in InGaN/GaN dot-in-a-wire phosphor-free white color light-emitting diodes (white LEDs) and to improve the device performance. The light output power and external quantum efficiency (EQE) of the white LEDs with coupled quantum wells were increased and indicated that the efficiency droop was reduced. The improved output power and EQE of LEDs with the coupled quantum wells were attributed to the significant reduction of electron overflow primarily responsible for efficiency degradation through the near-surface GaN region. Compared to the commonly used AlGaN electron blocking layer between the device active region and p-GaN, the incorporation of a suitable InGaN quantum well between the n-GaN and the active region does not adversely affect the hole injection process. Moreover, the electron transport to the device active region can be further controlled by optimizing the thickness and bandgap energy of this InGaN quantum well. In addition, a blue-emitting InGaN quantum well is incorporated between the quantum dot active region and the p-GaN, wherein electrons escaping from the device active region can recombine with holes and contribute to white-light emission. The resulting device exhibits high internal quantum efficiency of 58.5% with highly stable emission characteristics and virtually no efficiency droop.

7.
Opt Express ; 28(15): 22908-22918, 2020 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-32752544

RESUMEN

In this paper, AlInN nanowire ultraviolet light-emitting diodes (LEDs) with emission at ∼299 nm have been successfully demonstrated. We have further studied the light extraction properties of these nanowire LEDs using photonic crystal structures with square and hexagonal lattices of nanowires. The light extraction efficiency (LEE) of the periodic nanowire LED arrays was found to be significantly increased as compared to random nanowire LEDs. The LEEs reach ∼ 56%, and ∼ 63% for the square and hexagonal photonic crystal-based nanowire structures, respectively. Moreover, highly transverse-magnetic polarized emission was observed with dominant vertical light emission for the AlInN nanowire ultraviolet LEDs.

8.
Opt Lett ; 45(18): 5125-5128, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32932468

RESUMEN

In this Letter, the electron-blocking-layer (EBL)-free AlGaN ultraviolet (UV) light-emitting diodes (LEDs) using a strip-in-a-barrier structure have been proposed. The quantum barrier (QB) structures are systematically engineered by integrating a 1 nm intrinsic AlxGa(1-x)N strip into the middle of QBs. The resulted structures exhibit significantly reduced electron leakage and improved hole injection into the active region, thus generating higher carrier radiative recombination. Our study shows that the proposed structure improves radiative recombination by ∼220%, reduces electron leakage by ∼11 times, and enhances optical power by ∼225% at 60 mA current injection compared to a conventional AlGaN EBL LED structure. Moreover, the EBL-free strip-in-a-barrier UV LED records the maximum internal quantum efficiency (IQE) of ∼61.5% which is ∼72% higher, and IQE droop is ∼12.4%, which is ∼333% less compared to the conventional AlGaN EBL LED structure at ∼284.5nm wavelength. Hence, the proposed EBL-free AlGaN LED is the potential solution to enhance the optical power and produce highly efficient UV emitters.

9.
Appl Opt ; 59(24): 7352-7356, 2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-32902502

RESUMEN

Potassium hydroxide (KOH) and ammonium sulfide (NH4)2Sx have been used as a surface passivation treatment to improve the electrical and optical performance of AlGaN nanowire ultraviolet (UV) light-emitting diodes (LEDs). Enhancements in photoluminescence at 335 nm (49%), optical output power (65%), and electroluminescence (83%), with respect to the as-grown nanowire LED are recorded for the AlGaN nanowire UV LEDs with surface passivation. These enhancements are attributed to the reduced nonradiative recombination on the nanowire surfaces. This study provides a potential surface passivation approach to produce high-power AlGaN nanowire LEDs operating in the UV spectrum.

10.
Appl Opt ; 59(17): 5276-5281, 2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32543550

RESUMEN

This paper reports the illustration of electron blocking layer (EBL)-free AlGaN light-emitting diodes (LEDs) operating in the deep-ultraviolet (DUV) wavelength at ∼270nm. In this work, we demonstrated that the integration of an optimized thin undoped AlGaN strip layer in the middle of the last quantum barrier (LQB) could generate enough conduction band barrier height for the effectively reduced electron overflow into the p-GaN region. Moreover, the hole injection into the multi-quantum-well active region is significantly increased due to a large hole accumulation at the interface of the AlGaN strip and the LQB. As a result, the internal quantum efficiency and output power of the proposed LED structure has been enhanced tremendously compared to that of the conventional p-type EBL-based LED structure.

11.
Nano Lett ; 13(11): 5437-42, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24074440

RESUMEN

We have examined the carrier injection process of axial nanowire light-emitting diode (LED) structures and identified that poor carrier injection efficiency, due to the large surface recombination, is the primary cause for the extremely low output power of phosphor-free nanowire white LEDs. We have further developed InGaN/GaN/AlGaN dot-in-a-wire core-shell white LEDs on Si substrate, which can break the carrier injection efficiency bottleneck, leading to a massive enhancement in the output power. At room temperature, the devices can exhibit an output power of ~1.5 mW, which is more than 2 orders of magnitude stronger than nanowire LEDs without shell coverage. Additionally, such phosphor-free nanowire white LEDs can deliver an unprecedentedly high color rendering index of ~92-98 in both the warm and cool white regions, with the color rendering capability approaching that of an ideal light source, i.e. a blackbody.

12.
Nano Lett ; 12(3): 1317-23, 2012 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-22283508

RESUMEN

We have investigated for the first time the impact of electron overflow on the performance of nanowire light-emitting diodes (LEDs) operating in the entire visible spectral range, wherein intrinsic white light emission is achieved from self-organized InGaN quantum dots embedded in defect-free GaN nanowires on a single chip. Through detailed temperature-dependent electroluminescence and simulation studies, it is revealed that electron leakage out of the device active region is primarily responsible for efficiency degradation in such nanowire devices, which in conjunction with the presence of nonradiative surface recombination largely determines the unique emission characteristics of nanowire light-emitting diodes. We have further demonstrated that electron overflow in nanowire LEDs can be effectively prevented with the incorporation of a p-doped AlGaN electron blocking layer, leading to the achievement of phosphor-free white light-emitting diodes that can exhibit for the first time virtually zero efficiency droop for injection currents up to ~2200 A/cm(2). This study also provides unambiguous evidence that Auger recombination is not the primary mechanism responsible for efficiency droop in GaN-based nanowire light-emitting diodes.


Asunto(s)
Galio/química , Indio/química , Iluminación/instrumentación , Nanotubos/química , Semiconductores , Color , Transporte de Electrón , Diseño de Equipo , Análisis de Falla de Equipo , Ensayo de Materiales , Nanotubos/ultraestructura
13.
Micromachines (Basel) ; 14(10)2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37893363

RESUMEN

In this paper, in order to address the problem of electron leakage in AlGaN ultra-violet light-emitting diodes, we have proposed an electron-blocking free layer AlGaN ultra-violet (UV) light-emitting diode (LED) using polarization-engineered heart-shaped AlGaN quantum barriers (QB) instead of conventional barriers. This novel structure has decreased the downward band bending at the interconnection between the consecutive quantum barriers and also flattened the electrostatic field. The parameters used during simulation are extracted from the referred experimental data of conventional UV LED. Using the Silvaco Atlas TCAD tool; version 8.18.1.R, we have compared and optimized the optical as well as electrical characteristics of three varying LED structures. Enhancements in electroluminescence at 275 nm (52.7%), optical output power (50.4%), and efficiency (61.3%) are recorded for an EBL-free AlGaN UV LED with heart-shaped Al composition in the barriers. These improvements are attributed to the minimized non-radiative recombination on the surfaces, due to the progressively increasing effective conduction band barrier height, which subsequently enhances the carrier confinement. Hence, the proposed EBL-free AlGaN LED is the potential solution to enhance optical power and produce highly efficient UV emitters.

14.
Nanotechnology ; 23(19): 194012, 2012 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-22539212

RESUMEN

In this paper, we have performed a detailed investigation of the temperature- and current-dependent emission characteristics of nanowire light-emitting diodes, wherein InGaN/GaN dot-in-a-wire nanoscale heterostructures and a p-doped AlGaN electron blocking layer are incorporated in the device's active region to achieve white-light emission and to prevent electron overflow, respectively. Through these studies, the Auger coefficient is estimated to be in the range of ∼10(-34) cm(6) s(-1) or less, which is nearly four orders of magnitude smaller than the commonly reported values of planar InGaN/GaN heterostructures, suggesting Auger recombination plays an essentially negligible role in the performance of GaN-based nanowire light-emitting diodes. It is observed, however, that the performance of such nanowire LEDs suffers severely from Shockley-Read-Hall recombination, which can account for nearly 40% of the total carrier recombination under moderate injection conditions (∼100 A cm(-2)) at room temperature. The Shockley-Read-Hall nonradiative lifetime is estimated to be in the range of a few nanoseconds at room temperature, which correlates well with the surface recombination velocity of GaN and the wire diameters used in this experiment.

15.
Nanotechnology ; 22(44): 445202, 2011 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-21975473

RESUMEN

We report on the achievement of a new class of nanowire light emitting diodes (LEDs), incorporating InGaN/GaN dot-in-a-wire nanoscale heterostructures grown directly on Si(111) substrates. Strong emission across nearly the entire visible wavelength range can be realized by varying the dot composition. Moreover, we have demonstrated phosphor-free white LEDs by controlling the indium content in the dots in a single epitaxial growth step. Such devices can exhibit relatively high internal quantum efficiency (>20%) and no apparent efficiency droop for current densities up to ~ 200 A cm(-2).

16.
Micromachines (Basel) ; 12(3)2021 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-33801072

RESUMEN

To prevent electron leakage in deep ultraviolet (UV) AlGaN light-emitting diodes (LEDs), Al-rich p-type AlxGa(1-x)N electron blocking layer (EBL) has been utilized. However, the conventional EBL can mitigate the electron overflow only up to some extent and adversely, holes are depleted in the EBL due to the formation of positive sheet polarization charges at the heterointerface of the last quantum barrier (QB)/EBL. Subsequently, the hole injection efficiency of the LED is severely limited. In this regard, we propose an EBL-free AlGaN deep UV LED structure using graded staircase quantum barriers (GSQBs) instead of conventional QBs without affecting the hole injection efficiency. The reported structure exhibits significantly reduced thermal velocity and mean free path of electrons in the active region, thus greatly confines the electrons over there and tremendously decreases the electron leakage into the p-region. Moreover, such specially designed QBs reduce the quantum-confined Stark effect in the active region, thereby improves the electron and hole wavefunctions overlap. As a result, both the internal quantum efficiency and output power of the GSQB structure are ~2.13 times higher than the conventional structure at 60 mA. Importantly, our proposed structure exhibits only ~20.68% efficiency droop during 0-60 mA injection current, which is significantly lower compared to the regular structure.

17.
Micromachines (Basel) ; 12(8)2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-34442587

RESUMEN

A two-dimensional nanostructured fluoride red-emitting phosphor with an excellent quantum yield of ~91% is studied for cost-effective and high-color quality nanowire white light-emitting diodes (WLEDs). K2TiF6:Mn4+ phosphors are synthesized via an emulsification method using surfactants as sodium dodecyl sulphonate and oleic acid. The K2TiF6:Mn4+ phosphors in ultra-thin and nanosheet crystals are observed via scanning electron microscopy and high-resolution transmission electron microscopy. The surfactants are found to play a key role in inhibition of KTFM crystal growth process and stabilization of Mn4+ ions doping into the K2TiF6 host. The prepared phosphors exhibited intensive red emission at approximately 632 nm and excellent thermal stability in the range of 300-500 K upon 460 nm light excitation. Moreover, the K2TiF6:Mn4+ nanosheets were integrated on InGaN/AlGaN nanowire WLEDs for color quality study. The results show that the nanowire WLEDs with red-emitting phosphor exhibit unprecedentedly high color rendering index ~96.4, and correlated color temperature ~4450 K.

18.
Sci Rep ; 10(1): 2547, 2020 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-32054926

RESUMEN

We report the demonstration of the first axial AlInN ultraviolet core-shell nanowire light-emitting diodes with highly stable emission in the ultraviolet wavelength range. During epitaxial growth of the AlInN layer, an AlInN shell is spontaneously formed, resulting in reduced nonradiative recombination on the nanowire surface. The AlInN nanowires exhibit a high internal quantum efficiency of ~52% at room temperature for emission at 295 nm. The peak emission wavelength can be varied from 290 nm to 355 nm by changing the growth conditions. Moreover, significantly strong transverse magnetic (TM) polarized emission is recorded, which is ~4 times stronger than the transverse electric (TE) polarized light at 295 nm. This study provides an alternative approach for the fabrication of new types of high-performance ultraviolet light emitters.

19.
Micromachines (Basel) ; 10(8)2019 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-31344846

RESUMEN

We have demonstrated full-color and white-color micro light-emitting diodes (µLEDs) using InGaN/AlGaN core-shell nanowire heterostructures, grown on silicon substrate by molecular beam epitaxy. InGaN/AlGaN core-shell nanowire µLED arrays were fabricated with their wavelengths tunable from blue to red by controlling the indium composition in the device active regions. Moreover, our fabricated phosphor-free white-color µLEDs demonstrate strong and highly stable white-light emission with high color rendering index of ~ 94. The µLEDs are in circular shapes with the diameter varying from 30 to 100 µm. Such high-performance µLEDs are perfectly suitable for the next generation of high-resolution micro-display applications.

20.
ACS Omega ; 2(9): 5708-5714, 2017 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-31457831

RESUMEN

In this paper, we report our study on high-performance III-nitride nanowire light-emitting diodes (LEDs) on copper (Cu) substrates via the substrate-transfer process. Nanowire LED structures were first grown on silicon-on-insulator (SOI) substrates by molecular beam epitaxy. Subsequently, the SOI substrate was removed by combining dry- and wet-etching processes. Compared to conventional nanowire LEDs on Si, the nanowire LEDs on Cu exhibit several advantages, including more efficient thermal management and enhanced light-extraction efficiency (LEE) because of the usage of metal reflectors and highly thermally conductive metal substrates. The LED on Cu, therefore, has stronger photoluminescence, electroluminescence intensities, and better current-voltage characteristics compared to the conventional nanowire LED on Si. Our simulation results further confirm the improved device performance of LEDs on Cu, compared to LEDs on Si. The LEE of the nanowire LED on Cu is nine times higher than that of the LED on Si at the same nanowire radius of 60 nm and spacing of 130 nm. Moreover, by engineering the device-active region, we achieved high-brightness phosphor-free LEDs on Cu with highly stable white-light emission and high color-rendering index of ∼95, showing their promising applications in general lighting, flexible displays, and wearable applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA