Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Mol Cell ; 82(15): 2754-2768.e5, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35835111

RESUMEN

Type I CRISPR-Cas systems typically rely on a two-step process to degrade DNA. First, an RNA-guided complex named Cascade identifies the complementary DNA target. The helicase-nuclease fusion enzyme Cas3 is then recruited in trans for processive DNA degradation. Contrary to this model, here, we show that type I-A Cascade and Cas3 function as an integral effector complex. We provide four cryoelectron microscopy (cryo-EM) snapshots of the Pyrococcus furiosus (Pfu) type I-A effector complex in different stages of DNA recognition and degradation. The HD nuclease of Cas3 is autoinhibited inside the effector complex. It is only allosterically activated upon full R-loop formation, when the entire targeted region has been validated by the RNA guide. The mechanistic insights inspired us to convert Pfu Cascade-Cas3 into a high-sensitivity, low-background, and temperature-activated nucleic acid detection tool. Moreover, Pfu CRISPR-Cas3 shows robust bi-directional deletion-editing activity in human cells, which could find usage in allele-specific inactivation of disease-causing mutations.


Asunto(s)
Proteínas Asociadas a CRISPR , Proteínas Asociadas a CRISPR/genética , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Microscopía por Crioelectrón , ADN/genética , ADN/metabolismo , Endonucleasas/genética , Edición Génica , Humanos , ARN
2.
Nature ; 617(7959): 176-184, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37100904

RESUMEN

Physical interactions between proteins are essential for most biological processes governing life1. However, the molecular determinants of such interactions have been challenging to understand, even as genomic, proteomic and structural data increase. This knowledge gap has been a major obstacle for the comprehensive understanding of cellular protein-protein interaction networks and for the de novo design of protein binders that are crucial for synthetic biology and translational applications2-9. Here we use a geometric deep-learning framework operating on protein surfaces that generates fingerprints to describe geometric and chemical features that are critical to drive protein-protein interactions10. We hypothesized that these fingerprints capture the key aspects of molecular recognition that represent a new paradigm in the computational design of novel protein interactions. As a proof of principle, we computationally designed several de novo protein binders to engage four protein targets: SARS-CoV-2 spike, PD-1, PD-L1 and CTLA-4. Several designs were experimentally optimized, whereas others were generated purely in silico, reaching nanomolar affinity with structural and mutational characterization showing highly accurate predictions. Overall, our surface-centric approach captures the physical and chemical determinants of molecular recognition, enabling an approach for the de novo design of protein interactions and, more broadly, of artificial proteins with function.


Asunto(s)
Simulación por Computador , Aprendizaje Profundo , Unión Proteica , Proteínas , Humanos , Proteínas/química , Proteínas/metabolismo , Proteómica , Mapas de Interacción de Proteínas , Sitios de Unión , Biología Sintética
3.
PLoS Pathog ; 19(4): e1011206, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37018380

RESUMEN

Investigation of potential hosts of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is crucial to understanding future risks of spillover and spillback. SARS-CoV-2 has been reported to be transmitted from humans to various animals after requiring relatively few mutations. There is significant interest in describing how the virus interacts with mice as they are well adapted to human environments, are used widely as infection models and can be infected. Structural and binding data of the mouse ACE2 receptor with the Spike protein of newly identified SARS-CoV-2 variants are needed to better understand the impact of immune system evading mutations present in variants of concern (VOC). Previous studies have developed mouse-adapted variants and identified residues critical for binding to heterologous ACE2 receptors. Here we report the cryo-EM structures of mouse ACE2 bound to trimeric Spike ectodomains of four different VOC: Beta, Omicron BA.1, Omicron BA.2.12.1 and Omicron BA.4/5. These variants represent the oldest to the newest variants known to bind the mouse ACE2 receptor. Our high-resolution structural data complemented with bio-layer interferometry (BLI) binding assays reveal a requirement for a combination of mutations in the Spike protein that enable binding to the mouse ACE2 receptor.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Humanos , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/virología , Microscopía por Crioelectrón , Especificidad del Huésped , Mutación , Unión Proteica , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética
4.
J Biol Chem ; 291(19): 10046-57, 2016 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-26957546

RESUMEN

The partially de-N-acetylated poly-ß-1,6-N-acetyl-d-glucosamine (dPNAG) polymer serves as an intercellular biofilm adhesin that plays an essential role for the development and maintenance of integrity of biofilms of diverse bacterial species. Translocation of dPNAG across the bacterial outer membrane is mediated by a tetratricopeptide repeat-containing outer membrane protein, PgaA. To understand the molecular basis of dPNAG translocation, we determined the crystal structure of the C-terminal transmembrane domain of PgaA (residues 513-807). The structure reveals that PgaA forms a 16-strand transmembrane ß-barrel, closed by four loops on the extracellular surface. Half of the interior surface of the barrel that lies parallel to the translocation pathway is electronegative, suggesting that the corresponding negatively charged residues may assist the secretion of the positively charged dPNAG polymer. In vivo complementation assays in a pgaA deletion bacterial strain showed that a cluster of negatively charged residues proximal to the periplasm is necessary for biofilm formation. Biochemical analyses further revealed that the tetratricopeptide repeat domain of PgaA binds directly to the N-deacetylase PgaB and is critical for biofilm formation. Our studies support a model in which the positively charged PgaB-bound dPNAG polymer is delivered to PgaA through the PgaA-PgaB interaction and is further targeted to the ß-barrel lumen of PgaA potentially via a charge complementarity mechanism, thus priming the translocation of dPNAG across the bacterial outer membrane.


Asunto(s)
Amidohidrolasas/química , Proteínas de la Membrana Bacteriana Externa/química , Fenómenos Fisiológicos Bacterianos , Biopelículas/crecimiento & desarrollo , Membrana Celular/metabolismo , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Polisacáridos Bacterianos/metabolismo , Acetilación , Amidohidrolasas/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Cristalografía por Rayos X , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/metabolismo , Immunoblotting , Polímeros/química , Conformación Proteica
5.
Proc Natl Acad Sci U S A ; 111(50): E5439-44, 2014 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-25453093

RESUMEN

Various strains of bacteria are able to produce a unique class of functional amyloids termed curli, which are critical for biofilm formation, host cell adhesion, and colonization of inert surfaces. Curli are secreted via the type VIII bacterial secretion system, and they share biochemical and structural characteristics with amyloid fibers that have been implicated in deleterious disease in humans. Here, we report the crystal structure of Escherichia coli CsgG, which is an essential lipoprotein component of the type VIII secretion system and which forms a secretion channel in the bacterial outer membrane for transporting curli subunits. CsgG forms a crown-shaped, symmetric nonameric channel that spans the outer membrane via a 36-strand ß-barrel, with each subunit contributing four ß-strands. This nonameric complex contains a central channel with a pore located at the middle. The eyelet of the pore is ∼12 Å in diameter and is lined with three stacked nine-residue rings consisting of Tyr-66, Asn-70, or Phe-71. Our structure-based functional studies suggest that Tyr-66 and Phe-71 residues function as gatekeepers for the selective secretion of curli subunits. Our study describes in detail, to our knowledge, the first core structure of the type VIII bacterial secretion machinery. Importantly, our structural analysis suggests that the curli subunits are secreted via CsgG across the bacterial outer membrane in an unfolded form.


Asunto(s)
Sistemas de Secreción Bacterianos/genética , Proteínas de Escherichia coli/química , Escherichia coli/genética , Lipoproteínas/química , Modelos Moleculares , Western Blotting , Cromatografía en Gel , Cristalización , Análisis Mutacional de ADN , Cartilla de ADN/genética , Electroforesis en Gel de Poliacrilamida , Proteínas de Escherichia coli/aislamiento & purificación , Proteínas de Escherichia coli/metabolismo , Técnicas de Inactivación de Genes , Lipoproteínas/aislamiento & purificación , Lipoproteínas/metabolismo , Microscopía Electrónica , Mutagénesis , Reacción en Cadena de la Polimerasa , Conformación Proteica
6.
FASEB J ; 28(6): 2677-85, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24619089

RESUMEN

In gram-negative bacteria, the assembly of outer membrane proteins (OMPs) requires a ß-barrel assembly machinery (BAM) complex, of which BamA is an essential and evolutionarily conserved component. To elucidate the mechanism of BamA-mediated OMP biogenesis, we determined the crystal structure of the C-terminal transmembrane domain of BamA from Escherichia coli (EcBamA) at 2.6 Å resolution. The structure reveals 2 distinct features. First, a portion of the extracellular side of the ß barrel is composed of 5 markedly short ß strands, and the loops stemming from these ß strands form a potential surface cavity, filled by a portion of the L6 loop that includes the conserved VRGF/Y motif found in the Omp85 family. Second, the 4 extracellular loops L3, L4, L6, and L7 of EcBamA form a dome over the barrel, stabilized by a salt-bridge interaction network. Functional data show that hydrophilic-to-hydrophobic mutations of the potential hydrophilic surface cavity and a single Arg547Ala point mutation that may destabilize the dome severely affect the function of EcBamA. Our structure of the EcBamA ß barrel and structure-based mutagenesis studies suggest that the transmembrane ß strands of OMP substrates may integrate into the outer membrane at the interface of the first and last ß strands of the EcBamA barrel, whereas the soluble loops or domains may be transported out of the cell via the hydrophilic surface cavity on dislocation of the VRGF/Y motif of L6. In addition, the dome over the barrel may play an important role in maintaining the efficiency of OMP biogenesis.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Secuencia de Aminoácidos , Proteínas de la Membrana Bacteriana Externa/genética , Cristalografía por Rayos X , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Estructura Terciaria de Proteína
7.
Nat Commun ; 15(1): 1844, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38418509

RESUMEN

The synthesis of complex sugars is a key aspect of microbial biology. Cyclic ß-1,2-glucan (CßG) is a circular polysaccharide critical for host interactions of many bacteria, including major pathogens of humans (Brucella) and plants (Agrobacterium). CßG is produced by the cyclic glucan synthase (Cgs), a multi-domain membrane protein. So far, its structure as well as the mechanism underlining the synthesis have not been clarified. Here we use cryo-electron microscopy (cryo-EM) and functional approaches to study Cgs from A. tumefaciens. We determine the structure of this complex protein machinery and clarify key aspects of CßG synthesis, revealing a distinct mechanism that uses a tyrosine-linked oligosaccharide intermediate in cycles of polymerization and processing of the glucan chain. Our research opens possibilities for combating pathogens that rely on polysaccharide virulence factors and may lead to synthetic biology approaches for producing complex cyclic sugars.


Asunto(s)
Agrobacterium tumefaciens , Glucosiltransferasas , beta-Glucanos , Humanos , Agrobacterium tumefaciens/metabolismo , Brucella abortus/metabolismo , Microscopía por Crioelectrón , beta-Glucanos/metabolismo , Glucanos/metabolismo , Azúcares/metabolismo
8.
Nat Biotechnol ; 42(2): 229-242, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38361054

RESUMEN

The application of computational biology in drug development for membrane protein targets has experienced a boost from recent developments in deep learning-driven structure prediction, increased speed and resolution of structure elucidation, machine learning structure-based design and the evaluation of big data. Recent protein structure predictions based on machine learning tools have delivered surprisingly reliable results for water-soluble and membrane proteins but have limitations for development of drugs that target membrane proteins. Structural transitions of membrane proteins have a central role during transmembrane signaling and are often influenced by therapeutic compounds. Resolving the structural and functional basis of dynamic transmembrane signaling networks, especially within the native membrane or cellular environment, remains a central challenge for drug development. Tackling this challenge will require an interplay between experimental and computational tools, such as super-resolution optical microscopy for quantification of the molecular interactions of cellular signaling networks and their modulation by potential drugs, cryo-electron microscopy for determination of the structural transitions of proteins in native cell membranes and entire cells, and computational tools for data analysis and prediction of the structure and function of cellular signaling networks, as well as generation of promising drug candidates.


Asunto(s)
Aprendizaje Automático , Proteínas de la Membrana , Microscopía por Crioelectrón/métodos , Proteínas de la Membrana/química , Biología Computacional , Desarrollo de Medicamentos
9.
Sci Adv ; 9(29): eadh9002, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37467330

RESUMEN

Short prokaryotic argonaute (pAgo) and toll/interleukin-1 receptor/resistance protein (TIR)-analog of PAZ (APAZ) form a heterodimeric SPARTA complex that provides immunity to its prokaryotic host through an abortive infection mechanism. Monomeric SPARTA senses foreign RNA/DNA duplexes to assemble an active tetramer resulting in cell death by nicotinamide adenine dinucleotide (oxidized form) (NAD) depletion via an unknown mechanism. We report nine structures of SPARTA in different functional states at a resolution range of 4.2 to 2.9 angstroms, revealing its activation mechanism. Inactive SPARTA monomers bind to RNA/DNA duplexes to form symmetric dimers mediated by the association of Ago subunits. The initiation of tetramer assembly induces flexibility of the TIR domains enabling a symmetry-breaking rotational movement of a TIR domain in the dimer units which facilitates the TIR oligomerization, resulting in the formation of the substrate binding pocket and the activation of the SPARTA complex's NADase activity. Our findings provide detailed structural and mechanistic insights into activating a short argonaute defense system.


Asunto(s)
Células Procariotas , ARN , ADN , Sistema Inmunológico
10.
Nat Struct Mol Biol ; 30(2): 135-139, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36471056

RESUMEN

The CRISPR-guided caspase (Craspase) complex is an assembly of the target-specific RNA nuclease known as Cas7-11 bound to CRISPR RNA (crRNA) and an ancillary protein known as TPR-CHAT (tetratricopeptide repeats (TPR) fused with a CHAT domain). The Craspase complex holds promise as a tool for gene therapy and biomedical research, but its regulation is poorly understood. TPR-CHAT regulates Cas7-11 nuclease activity via an unknown mechanism. In the present study, we use cryoelectron microscopy to determine structures of the Desulfonema magnum (Dm) Craspase complex to gain mechanistic insights into its regulation. We show that DmTPR-CHAT stabilizes crRNA-bound DmCas7-11 in a closed conformation via a network of interactions mediated by the DmTPR-CHAT N-terminal domain, the DmCas7-11 insertion finger and Cas11-like domain, resulting in reduced target RNA accessibility and cleavage.


Asunto(s)
Proteínas Asociadas a CRISPR , Repeticiones de Tetratricopéptidos , Microscopía por Crioelectrón , Conformación Proteica , Conformación de Ácido Nucleico , ARN Bacteriano/química , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética
11.
J Mol Biol ; 435(19): 168234, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37597690

RESUMEN

ABCG2 is an ATP-binding cassette transporter that exports a wide range of xenobiotic compounds and has been recognized as a contributing factor for multidrug resistance in cancer cells. Substrate and inhibitor interactions with ABCG2 have been extensively studied and small molecule inhibitors have been developed that prevent the export of anticancer drugs from tumor cells. Here, we explore the potential for inhibitors that target sites other than the substrate binding pocket of ABCG2. We developed novel nanobodies against ABCG2 and used functional analyses to select three inhibitory nanobodies (Nb8, Nb17 and Nb96) for structural studies by single particle cryo-electron microscopy. Our results showed that these nanobodies allosterically bind to different regions of the nucleotide binding domains. Two copies of Nb8 bind to the apex of the NBDs preventing them from fully closing. Nb17 binds near the two-fold axis of the transporter and interacts with both NBDs. Nb96 binds to the side of the NBD and immobilizes a region connected to key motifs involved in ATP binding and hydrolysis. All three nanobodies prevent the transporter from undergoing conformational changes required for substrate transport. These findings advance our understanding of the molecular basis of modulation of ABCG2 by external binders, which may contribute to the development of a new generation of inhibitors. Furthermore, this is the first example of modulation of human multidrug resistance transporters by nanobodies.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Anticuerpos de Dominio Único , Humanos , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/antagonistas & inhibidores , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/química , Transportadoras de Casetes de Unión a ATP , Microscopía por Crioelectrón , Hidrólisis , Proteínas de Transporte de Membrana , Proteínas de Neoplasias
12.
Nat Commun ; 14(1): 7038, 2023 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-37923808

RESUMEN

Organohalide-respiring bacteria are key organisms for the bioremediation of soils and aquifers contaminated with halogenated organic compounds. The major players in this process are respiratory reductive dehalogenases, corrinoid enzymes that use organohalides as substrates and contribute to energy conservation. Here, we present the structure of a menaquinol:organohalide oxidoreductase obtained by cryo-EM. The membrane-bound protein was isolated from Desulfitobacterium hafniense strain TCE1 as a PceA2B2 complex catalysing the dechlorination of tetrachloroethene. Two catalytic PceA subunits are anchored to the membrane by two small integral membrane PceB subunits. The structure reveals two menaquinone molecules bound at the interface of the two different subunits, which are the starting point of a chain of redox cofactors for electron transfer to the active site. In this work, the structure elucidates how energy is conserved during organohalide respiration in menaquinone-dependent organohalide-respiring bacteria.


Asunto(s)
Bacterias , Oxidorreductasas , Oxidorreductasas/metabolismo , Vitamina K 2/metabolismo , Oxidación-Reducción , Transporte de Electrón , Bacterias/metabolismo , Biodegradación Ambiental
13.
Nat Commun ; 14(1): 7296, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37949847

RESUMEN

BSEP (ABCB11) is an ATP-binding cassette transporter that is expressed in hepatocytes and extrudes bile salts into the canaliculi of the liver. BSEP dysfunction, caused by mutations or induced by drugs, is frequently associated with severe cholestatic liver disease. We report the cryo-EM structure of glibenclamide-bound human BSEP in nanodiscs, revealing the basis of small-molecule inhibition. Glibenclamide binds the apex of a central binding pocket between the transmembrane domains, preventing BSEP from undergoing conformational changes, and thus rationalizing the reduced uptake of bile salts. We further report two high-resolution structures of BSEP trapped in distinct nucleotide-bound states by using a catalytically inactivated BSEP variant (BSEPE1244Q) to visualize a pre-hydrolysis state, and wild-type BSEP trapped by vanadate to visualize a post-hydrolysis state. Our studies provide structural and functional insight into the mechanism of bile salt extrusion and into small-molecule inhibition of BSEP, which may rationalize drug-induced liver toxicity.


Asunto(s)
Colestasis , Gliburida , Humanos , Transportadoras de Casetes de Unión a ATP/metabolismo , Ácidos y Sales Biliares/metabolismo , Colestasis/metabolismo , Gliburida/metabolismo , Gliburida/farmacología , Hígado/metabolismo
14.
Nat Commun ; 14(1): 3322, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37369644

RESUMEN

There has been limited characterisation of bat-borne coronaviruses in Europe. Here, we screened for coronaviruses in 48 faecal samples from 16 of the 17 bat species breeding in the UK, collected through a bat rehabilitation and conservationist network. We recovered nine complete genomes, including two novel coronavirus species, across six bat species: four alphacoronaviruses, a MERS-related betacoronavirus, and four closely related sarbecoviruses. We demonstrate that at least one of these sarbecoviruses can bind and use the human ACE2 receptor for infecting human cells, albeit suboptimally. Additionally, the spike proteins of these sarbecoviruses possess an R-A-K-Q motif, which lies only one nucleotide mutation away from a furin cleavage site (FCS) that enhances infectivity in other coronaviruses, including SARS-CoV-2. However, mutating this motif to an FCS does not enable spike cleavage. Overall, while UK sarbecoviruses would require further molecular adaptations to infect humans, their zoonotic risk warrants closer surveillance.


Asunto(s)
COVID-19 , Quirópteros , Animales , Humanos , COVID-19/genética , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Genómica , Reino Unido , Filogenia , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo
15.
Nat Struct Mol Biol ; 29(12): 1170-1177, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36456825

RESUMEN

Polysaccharides play critical roles in bacteria, including the formation of protective capsules and biofilms and establishing specific host cell interactions. Their transport across membranes is often mediated by ATP-binding cassette (ABC) transporters, which utilize ATP to translocate diverse molecules. Cyclic ß-glucans (CßGs) are critical for host interaction of the Rhizobiales, including the zoonotic pathogen Brucella. CßGs are exported into the periplasmic space by the cyclic glucan transporter (Cgt). The interaction of an ABC transporter with a polysaccharide substrate has not been visualized so far. Here we use single-particle cryoelectron microscopy to elucidate the structures of Cgt from Brucella abortus in four conformational states. The substrate-bound structure reveals an unusual binding pocket at the height of the cytoplasmic leaflet, whereas ADP-vanadate models hint at an alternative mechanism of substrate release. Our work provides insights into the translocation of large, heterogeneous substrates and sheds light on protein-polysaccharide interactions in general.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Brucella abortus , beta-Glucanos , Adenosina Trifosfato/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , beta-Glucanos/metabolismo , Brucella abortus/metabolismo , Microscopía por Crioelectrón , Glucanos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Polisacáridos
16.
Nat Commun ; 13(1): 1826, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35383177

RESUMEN

Lipopolysaccharides are major constituents of the extracellular leaflet in the bacterial outer membrane and form an effective physical barrier for environmental threats and for antibiotics in Gram-negative bacteria. The last step of LPS insertion via the Lpt pathway is mediated by the LptD/E protein complex. Detailed insights into the architecture of LptDE transporter complexes have been derived from X-ray crystallography. However, no structure of a laterally open LptD transporter, a transient state that occurs during LPS release, is available to date. Here, we report a cryo-EM structure of a partially opened LptDE transporter in complex with rigid chaperones derived from nanobodies, at 3.4 Å resolution. In addition, a subset of particles allows to model a structure of a laterally fully opened LptDE complex. Our work offers insights into the mechanism of LPS insertion, provides a structural framework for the development of antibiotics targeting LptD and describes a highly rigid chaperone scaffold to enable structural biology of challenging protein targets.


Asunto(s)
Proteínas de Escherichia coli , Lipopolisacáridos , Proteínas de la Membrana Bacteriana Externa/metabolismo , Transporte Biológico , Microscopía por Crioelectrón , Cristalografía por Rayos X , Proteínas de Escherichia coli/metabolismo , Bacterias Gramnegativas/metabolismo , Lipopolisacáridos/metabolismo
17.
Nat Microbiol ; 7(9): 1376-1389, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35879526

RESUMEN

The SARS-CoV-2 Omicron variant has very high levels of transmission, is resistant to neutralization by authorized therapeutic human monoclonal antibodies (mAb) and is less sensitive to vaccine-mediated immunity. To provide additional therapies against Omicron, we isolated a mAb named P2G3 from a previously infected vaccinated donor and showed that it has picomolar-range neutralizing activity against Omicron BA.1, BA.1.1, BA.2 and all other variants tested. We solved the structure of P2G3 Fab in complex with the Omicron spike using cryo-electron microscopy at 3.04 Å resolution to identify the P2G3 epitope as a Class 3 mAb that is different from mAb-binding spike epitopes reported previously. Using a SARS-CoV-2 Omicron monkey challenge model, we show that P2G3 alone, or in combination with P5C3 (a broadly active Class 1 mAb previously identified), confers complete prophylactic or therapeutic protection. Although we could select for SARS-CoV-2 mutants escaping neutralization by P2G3 or by P5C3 in vitro, they had low infectivity and 'escape' mutations are extremely rare in public sequence databases. We conclude that this combination of mAbs has potential as an anti-Omicron drug.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Anticuerpos Monoclonales , Anticuerpos Antivirales , Microscopía por Crioelectrón , Epítopos , Haplorrinos , Humanos , Glicoproteínas de Membrana , Pruebas de Neutralización , Glicoproteína de la Espiga del Coronavirus , Proteínas del Envoltorio Viral
18.
J Mol Biol ; 433(13): 166980, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-33838147

RESUMEN

ABCG2 is an ATP-binding cassette (ABC) transporter whose function affects the pharmacokinetics of drugs and contributes to multidrug resistance of cancer cells. While its interaction with the endogenous substrate estrone-3-sulfate (E1S) has been elucidated at a structural level, the recognition and recruitment of exogenous compounds is not understood at sufficiently high resolution. Here we present three cryo-EM structures of nanodisc-reconstituted, human ABCG2 bound to anticancer drugs tariquidar, topotecan and mitoxantrone. To enable structural insight at high resolution, we used Fab fragments of the ABCG2-specific monoclonal antibody 5D3, which binds to the external side of the transporter but does not interfere with drug-induced stimulation of ATPase activity. We observed that the binding pocket of ABCG2 can accommodate a single tariquidar molecule in a C-shaped conformation, similar to one of the two tariquidar molecules bound to ABCB1, where tariquidar acts as an inhibitor. We also found single copies of topotecan and mitoxantrone bound between key phenylalanine residues. Mutagenesis experiments confirmed the functional importance of two residues in the binding pocket, F439 and N436. Using 3D variability analyses, we found a correlation between substrate binding and reduced dynamics of the nucleotide binding domains (NBDs), suggesting a structural explanation for drug-induced ATPase stimulation. Our findings provide additional insight into how ABCG2 differentiates between inhibitors and substrates and may guide a rational design of new modulators and substrates.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/química , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Preparaciones Farmacéuticas/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/antagonistas & inhibidores , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/ultraestructura , Sitios de Unión , Transporte Biológico , Humanos , Modelos Moleculares , Preparaciones Farmacéuticas/química , Relación Estructura-Actividad , Especificidad por Sustrato
19.
Nat Commun ; 12(1): 4376, 2021 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-34282134

RESUMEN

ABCG2 is a multidrug transporter that affects drug pharmacokinetics and contributes to multidrug resistance of cancer cells. In previously reported structures, the reaction cycle was halted by the absence of substrates or ATP, mutation of catalytic residues, or the presence of small-molecule inhibitors or inhibitory antibodies. Here we present cryo-EM structures of ABCG2 under turnover conditions containing either the endogenous substrate estrone-3-sulfate or the exogenous substrate topotecan. We find two distinct conformational states in which both the transport substrates and ATP are bound. Whereas the state turnover-1 features more widely separated NBDs and an accessible substrate cavity between the TMDs, turnover-2 features semi-closed NBDs and an almost fully occluded substrate cavity. Substrate size appears to control which turnover state is mainly populated. The conformational changes between turnover-1 and turnover-2 states reveal how ATP binding is linked to the closing of the cytoplasmic side of the TMDs. The transition from turnover-1 to turnover-2 is the likely bottleneck or rate-limiting step of the reaction cycle, where the discrimination of substrates and inhibitors occurs.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Proteínas de Neoplasias/metabolismo , Preparaciones Farmacéuticas , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/química , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Adenosina Trifosfatasas/metabolismo , Transporte Biológico , Microscopía por Crioelectrón , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Proteínas de la Membrana , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Dominios Proteicos
20.
Curr Opin Neurobiol ; 61: 89-95, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32112991

RESUMEN

Fibrils of alpha-synuclein are significant components of cellular inclusions associated with several neuropathological disorders including Parkinson's disease, multiple system atrophy and dementia with Lewy bodies. In recent years, technological advances in the field of transmission electron microscopy and image processing have made it possible to solve the structure of alpha-synuclein fibrils at high resolution. This review discusses the results of structural studies using cryo-electron microscopy, which revealed that in-vitro produced fibrils vary in diameter from 5nm for single-protofilament fibrils, to 10nm for two-protofilament fibrils. In addition, the atomic models hint at contributions of the familial Parkinson's disease mutation sites to inter-protofilament interaction and the locations where post-translational modifications take place. Here, we propose a nomenclature system that allows identifying the existing alpha-synuclein polymorphs and that will allow to incorporate additional high-resolution structures determined in the future.


Asunto(s)
Microscopía por Crioelectrón , Citoesqueleto , Humanos , Mutación , Enfermedad de Parkinson , alfa-Sinucleína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA