Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Cancer ; 19(1): 126, 2019 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-30732578

RESUMEN

BACKGROUND: Insulin-like Growth Factor Receptor-1 (IGF1R) system sustains the genesis of rhabdomyosarcoma through IGF2 autocrine overexpression. While several IGF1R-targeted strategies have been investigated to interphere with rhabdomyosarcoma growth, no attempt to neutralize IGF2 has been reported. We therefore studied the possibility to hamper rhabdomyosarcoma growth with passive and active immune approaches targeting IGF2. METHODS: A murine model developing IGF2-overexpressing pelvic rhabdomyosarcoma, along with IGF2-independent salivary carcinoma, was used to investigate the efficacy and specificity of passive anti-IGFs antibody treatment. Active vaccinations with electroporated DNA plasmids encoding murine or human IGF2 were performed to elicit autochthonous anti-IGF2 antibodies. Vaccinated mice received the intravenous injection of rhabdomyosarcoma cells to study the effects of anti-IGF2 antibodies against developing metastases. RESULTS: Passive administration of antibodies neutralizing IGFs delayed the onset of IGF2-overexpressing rhabdomyosarcoma but not of IGF2-independent salivary carcinoma. A DNA vaccine against murine IGF2 did not elicit antibodies, even when combined with Treg-depletion, while a DNA vaccine encoding the human IGF2 gene elicited antibodies crossreacting with murine IGF2. Mice with anti-IGF2 antibodies were partially protected against the metastatic growth of IGF2-addicted rhabdomyosarcoma cells. CONCLUSIONS: Immune targeting of autocrine IGF2 inhibited rhabdomyosarcoma genesis and metastatic growth.


Asunto(s)
Comunicación Autocrina , Inmunomodulación , Factor II del Crecimiento Similar a la Insulina/metabolismo , Rabdomiosarcoma/inmunología , Rabdomiosarcoma/metabolismo , Animales , Animales Modificados Genéticamente , Anticuerpos Monoclonales/farmacología , Antineoplásicos Inmunológicos/farmacología , Línea Celular Tumoral , Proliferación Celular , Modelos Animales de Enfermedad , Femenino , Humanos , Factor II del Crecimiento Similar a la Insulina/antagonistas & inhibidores , Factor II del Crecimiento Similar a la Insulina/genética , Masculino , Ratones , Ratas , Rabdomiosarcoma/tratamiento farmacológico , Rabdomiosarcoma/patología , Resultado del Tratamiento
2.
Breast Cancer Res ; 17: 70, 2015 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-25997501

RESUMEN

INTRODUCTION: We previously demonstrated that HER2/neu-driven mammary carcinogenesis can be prevented by an interleukin-12 (IL-12)-adjuvanted allogeneic HER2/neu-expressing cell vaccine. Since IL-12 can induce the release of interleukin-15 (IL-15), in the present study we investigated the role played by IL-15 in HER2/neu driven mammary carcinogenesis and in its immunoprevention. METHODS: HER2/neu transgenic mice with homozygous knockout of IL-15 (here referred to as IL15KO/NeuT mice) were compared to IL-15 wild-type HER2/neu transgenic mice (NeuT) regarding mammary carcinogenesis, profile of peripheral blood lymphocytes and splenocytes and humoral and cellular responses induced by the vaccine. RESULTS: IL15KO/NeuT mice showed a significantly earlier mammary cancer onset than NeuT mice, with median latency times of 16 and 20 weeks respectively, suggesting a role for IL-15 in cancer immunosurveillance. Natural killer (NK) and CD8+ lymphocytes were significantly lower in IL15KO/NeuT mice compared to mice with wild-type IL-15. The IL-12-adjuvanted allogeneic HER2/neu-expressing cell vaccine was still able to delay mammary cancer onset but efficacy in IL-15-lacking mice vanished earlier: all vaccinated IL15KO/NeuT mice developed tumors within 80 weeks of age (median latency of 53 weeks), whereas more than 70 % of vaccinated NeuT mice remained tumor-free up to 80 weeks of age. Vaccinated IL15KO/NeuT mice showed less necrotic tumors with fewer CD3+ lymphocyes and lacked perforin-positive infiltrating cells compared to NeuT mice. Concerning the anti-vaccine antibody response, antibody titer was unaffected by the lack of IL-15, but less antibodies of IgM and IgG1 isotypes were found in IL15KO/NeuT mice. A lower induction by vaccine of systemic interferon-gamma (IFN-γ) and interleukin-5 (IL-5) was also observed in IL15KO/NeuT mice when compared to NeuT mice. Finally, we found a lower level of CD8+ memory cells in the peripheral blood of vaccinated IL15KO/NeuT mice compared to NeuT mice. CONCLUSIONS: We demonstrated that IL-15 has a role in mammary cancer immunosurveillance and that IL-15-regulated NK and CD8+ memory cells play a role in long-lasting immunoprevention, further supporting the potential use of IL-15 as adjuvant in immunological strategies against tumors.


Asunto(s)
Neoplasias de la Mama/inmunología , Neoplasias de la Mama/metabolismo , Transformación Celular Neoplásica/inmunología , Transformación Celular Neoplásica/metabolismo , Interleucina-15/metabolismo , Monitorización Inmunológica , Receptor ErbB-2/metabolismo , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Vacunas contra el Cáncer/inmunología , Quimiotaxis/genética , Quimiotaxis/inmunología , Modelos Animales de Enfermedad , Femenino , Expresión Génica , Humanos , Interleucina-15/genética , Ratones Noqueados , Ratones Transgénicos , Receptor ErbB-2/genética , Transducción de Señal
3.
PLoS Pathog ; 9(1): e1003155, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23382683

RESUMEN

Oncolytic viruses aim to specifically kill tumor cells. A major challenge is the effective targeting of disseminated tumors in vivo. We retargeted herpes simplex virus (HSV) tropism to HER-2 oncoprotein p185, overexpressed in ovary and breast cancers. The HER-2-retargeted R-LM249 exclusively infects and kills tumor cells expressing high levels of human HER-2. Here, we assessed the efficacy of systemically i.p. delivered R-LM249 against disseminated tumors in mouse models that recapitulate tumor spread to the peritoneum in women. The human ovarian carcinoma SK-OV-3 cells implanted intraperitoneally (i.p.) in immunodeficient Rag2⁻/⁻;Il2rg⁻/⁻ mice gave rise to a progressive peritoneal carcinomatosis which mimics the fatal condition in advanced human patients. I.p. administration of R-LM249 strongly inhibited carcinomatosis, resulting in 60% of mice free from peritoneal diffusion, and 95% reduction in the total weight of neoplastic nodules. Intraperitoneal metastases are a common outcome in breast cancer: i.p. administration of R-LM249 strongly inhibited the growth of ovarian metastases of HER-2+ MDA-MB-453 breast cells. Brain metastases were also reduced. Cumulatively, upon i.p. administration the HER-2-redirected oncolytic HSV effectively reduced the growth of ovarian and breast carcinoma disseminated to the peritoneal cavity.


Asunto(s)
Neoplasias de la Mama/terapia , Herpesvirus Humano 1/genética , Viroterapia Oncolítica/métodos , Virus Oncolíticos/genética , Neoplasias Ováricas/terapia , Neoplasias Peritoneales/terapia , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/mortalidad , Línea Celular Tumoral , Supervivencia Celular , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Femenino , Terapia Genética/métodos , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Herpesvirus Humano 1/fisiología , Humanos , Ratones , Ratones Desnudos , Terapia Molecular Dirigida , Virus Oncolíticos/metabolismo , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/mortalidad , Neoplasias Peritoneales/mortalidad , Neoplasias Peritoneales/secundario , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Tasa de Supervivencia , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Breast Cancer Res ; 16(1): R10, 2014 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-24451168

RESUMEN

INTRODUCTION: The availability of mice transgenic for the human HER2 gene (huHER2) and prone to the development of HER2-driven mammary carcinogenesis (referred to as FVB-huHER2 mice) prompted us to study active immunopreventive strategies targeting the human HER2 molecule in a tolerant host. METHODS: FVB-huHER2 mice were vaccinated with either IL-12-adjuvanted human HER2-positive cancer cells or DNA vaccine carrying chimeric human-rat HER2 sequences. Onset and number of mammary tumors were recorded to evaluate vaccine potency. Mice sera were collected and passively transferred to xenograft-bearing mice to assess their antitumor efficacy. RESULTS: Both cell and DNA vaccines significantly delayed tumor onset, leading to about 65% tumor-free mice at 70 weeks, whereas mock-vaccinated FVB-huHER2 controls developed mammary tumors at a median age of 45 weeks. In the DNA vaccinated group, 65% of mice were still tumor-free at about 90 weeks of age. The number of mammary tumors per mouse was also significantly reduced in vaccinated mice. Vaccines broke the immunological tolerance to the huHER2 transgene, inducing both humoral and cytokine responses. The DNA vaccine mainly induced a high and sustained level of anti-huHER2 antibodies, the cell vaccine also elicited interferon (IFN)-γ production. Sera of DNA-vaccinated mice transferred to xenograft-carrying mice significantly inhibited the growth of human HER2-positive cancer cells. CONCLUSIONS: Anti-huHER2 antibodies elicited in the tolerant host exert antitumor activity.


Asunto(s)
Vacunas contra el Cáncer/inmunología , Neoplasias Mamarias Animales/inmunología , Receptor ErbB-2/inmunología , Vacunas de ADN/inmunología , Traslado Adoptivo , Animales , Anticuerpos/sangre , Formación de Anticuerpos/inmunología , Línea Celular Tumoral , Femenino , Humanos , Interferón gamma/biosíntesis , Interleucina-12/inmunología , Células MCF-7 , Neoplasias Mamarias Animales/patología , Neoplasias Mamarias Animales/prevención & control , Ratones , Ratones Transgénicos , Receptor ErbB-2/genética , Bazo/citología , Bazo/trasplante
5.
Growth Factors ; 32(1): 41-52, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24438070

RESUMEN

The insulin-like growth factor-1 system, including its critical mediator insulin receptor substrate-1 (IRS-1), is involved in regulating osteosarcoma (OS) cell proliferation or differentiation. The aim of this study is to define the role of IRS-1 in OS cells by assessing the contribution of IRS-1 in the differentiation of human and murine OS cell lines and mouse mesenchymal stem cells (MSCs) and found that the basal level of IRS-1 is important for the initiation of differentiation. Both down-regulation and over-expression of IRS-1 inhibited osteoblastic differentiation. In vivo studies showed that OS cells over-expressing IRS-1 have increased metastatic potential and tumor growth. The proteasome inhibitor MG-132 led to an increase in IRS-1 protein level that inhibited osteoblastic differentiation, suggesting a role for proteasomal regulation in maintaining the appropriate expression level of IRS-1. Thus, precise regulation of IRS-1 expression level is critical for determining the differentiating capacity of MSCs and OS cells, and that derangement of IRS-1 levels can be a critical step in OS transformation.


Asunto(s)
Proteínas Sustrato del Receptor de Insulina/biosíntesis , Factor I del Crecimiento Similar a la Insulina/metabolismo , Células Madre Mesenquimatosas/metabolismo , Osteoblastos/metabolismo , Osteosarcoma/patología , Animales , Diferenciación Celular/genética , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Transformación Celular Neoplásica/genética , Inhibidores de Cisteína Proteinasa/farmacología , Regulación del Desarrollo de la Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Proteínas Sustrato del Receptor de Insulina/genética , Proteínas Sustrato del Receptor de Insulina/metabolismo , Leupeptinas/farmacología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Ratones Desnudos , Osteocalcina/biosíntesis , Fosforilación , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/farmacología , Interferencia de ARN , ARN Interferente Pequeño , Transducción de Señal/genética , Factor de Transcripción Sp7 , Factores de Transcripción/biosíntesis
6.
Proc Natl Acad Sci U S A ; 106(22): 9039-44, 2009 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-19458262

RESUMEN

Oncolytic virotherapy exploits the ability of viruses to infect, replicate into, and kill tumor cells. Among the viruses that entered clinical trials are HSVs. HSVs can be engineered to become tumor-specific by deletion of selected genes or retargeting to tumor-specific receptors. A clinically relevant surface molecule is HER-2, hyperexpressed in one fourth of mammary and ovary carcinomas, and associated with high metastatic ability. As a previously undescribed strategy to generate HSV recombinants retargeted to HER-2 and detargeted from natural receptors, we replaced the Ig-folded core in the receptor-binding virion glycoprotein gD with anti-HER-2 single-chain antibody. The recombinant entered cells solely via HER-2 and lysed HER-2-positive cancer cells. Because of the high specificity, its safety profile in i.p. injected mice was very high, with a LD(50) >5 x 10(8) pfu, a figure at least 10,000-fold higher than that of corresponding WT-gD carrying virus (LD(50) approximately 5 x 10(4) pfu). When administered intratumorally to nude mice bearing HER-2-hyperexpressing human tumors, it strongly inhibited progressive tumor growth. The results provide a generally applicable strategy to engineer HSV recombinants retargeted to a wide range of receptors for which a single-chain antibody is available, and show the potential for retargeted HSV to exert target-specific inhibition of human tumor growth. Therapy with HER-2-retargeted oncolytic HSV could be effective in combined or sequential protocols with monoclonal antibodies and small inhibitors, particularly in patients resistant to HER-2-targeted therapy because of alterations in HER-2 signaling pathway, or against brain metastases inaccessible to anti-HER-2 antibodies.


Asunto(s)
Neoplasias/terapia , Viroterapia Oncolítica , Virus Oncolíticos/genética , Receptor ErbB-2/biosíntesis , Simplexvirus/genética , Animales , Moléculas de Adhesión Celular/genética , Línea Celular Tumoral , Humanos , Región Variable de Inmunoglobulina/genética , Ratones , Nectinas , Neoplasias/metabolismo , Proteínas Virales/genética
7.
Cells ; 10(7)2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34359977

RESUMEN

Rhabdomyosarcomas (RMS) are tumors of the skeletal muscle lineage. Two main features allow for distinction between subtypes: morphology and presence/absence of a translocation between the PAX3 (or PAX7) and FOXO1 genes. The two main subtypes are fusion-positive alveolar RMS (ARMS) and fusion-negative embryonal RMS (ERMS). This review will focus on the role of receptor tyrosine kinases of the human epidermal growth factor receptor (EGFR) family that is comprised EGFR itself, HER2, HER3 and HER4 in RMS onset and the potential therapeutic targeting of receptor tyrosine kinases. EGFR is highly expressed by ERMS tumors and cell lines, in some cases contributing to tumor growth. If not mutated, HER2 is not directly involved in control of RMS cell growth but can be expressed at significant levels. A minority of ERMS carries a HER2 mutation with driving activity on tumor growth. HER3 is frequently overexpressed by RMS and can play a role in the residual myogenic differentiation ability and in resistance to signaling-directed therapy. HER family members could be exploited for therapeutic approaches in two ways: blocking the HER member (playing a driving role for tumor growth with antibodies or inhibitors) and targeting expressed HER members to vehiculate toxins or immune effectors.


Asunto(s)
Diferenciación Celular/fisiología , Regulación Neoplásica de la Expresión Génica/genética , Rabdomiosarcoma/metabolismo , Translocación Genética/fisiología , Diferenciación Celular/genética , Proliferación Celular/fisiología , Humanos , Proteínas Tirosina Quinasas/metabolismo , Rabdomiosarcoma/tratamiento farmacológico , Rabdomiosarcoma/genética , Translocación Genética/genética
8.
Oncogenesis ; 10(11): 77, 2021 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-34775465

RESUMEN

HER2-positive breast cancers may lose HER2 expression in recurrences and metastases. In this work, we studied cell lines derived from two transgenic mammary tumors driven by human HER2 that showed different dynamics of HER2 status. MamBo89HER2stable cell line displayed high and stable HER2 expression, which was maintained upon in vivo passages, whereas MamBo43HER2labile cell line gave rise to HER2-negative tumors from which MamBo38HER2loss cell line was derived. Both low-density seeding and in vitro trastuzumab treatment of MamBo43HER2labile cells induced the loss of HER2 expression. MamBo38HER2loss cells showed a spindle-like morphology, high stemness and acquired in vivo malignancy. A comprehensive molecular profile confirmed the loss of addiction to HER2 signaling and acquisition of an EMT signature, together with increased angiogenesis and migration ability. We identified PDGFR-B among the newly expressed determinants of MamBo38HER2loss cell tumorigenic ability. Sunitinib inhibited MamBo38HER2loss tumor growth in vivo and reduced stemness and IL6 production in vitro. In conclusion, HER2-positive mammary tumors can evolve into tumors that display distinctive traits of claudin-low tumors. Our dynamic model of HER2 status can lead to the identification of new druggable targets, such as PDGFR-B, in order to counteract the resistance to HER2-targeted therapy that is caused by HER2 loss.

9.
Sci Rep ; 11(1): 1563, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33452364

RESUMEN

We established patient-derived xenografts (PDX) from human primary breast cancers and studied whether stability or progressive events occurred during long-term in vivo passages (up to 4 years) in severely immunodeficient mice. While most PDX showed stable biomarker expression and growth phenotype, a HER2-positive PDX (PDX-BRB4) originated a subline (out of 6 studied in parallel) that progressively acquired a significantly increased tumor growth rate, resistance to cell senescence of in vitro cultures, increased stem cell marker expression and high lung metastatic ability, along with a strong decrease of BCL2 expression. RNAseq analysis of the progressed subline showed that BCL2 was connected to three main hub genes also down-regulated (CDKN2A, STAT5A and WT1). Gene expression of progressed subline suggested a partial epithelial-to-mesenchymal transition. PDX-BRB4 with its progressed subline is a preclinical model mirroring the clinical paradox of high level-BCL2 as a good prognostic factor in breast cancer. Sequential in vivo passages of PDX-BRB4 chronically treated with trastuzumab developed progressive loss of sensitivity to trastuzumab while HER2 expression and sensitivity to the pan-HER tyrosine kinase inhibitor neratinib were maintained. Long-term PDX studies, even though demanding, can originate new preclinical models, suitable to investigate the mechanisms of breast cancer progression and new therapeutic approaches.


Asunto(s)
Neoplasias de la Mama/metabolismo , Línea Celular Tumoral/metabolismo , Receptor ErbB-2/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Transición Epitelial-Mesenquimal/genética , Femenino , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Pronóstico , Inhibidores de Proteínas Quinasas/farmacología , Quinolinas/uso terapéutico , Trastuzumab/uso terapéutico
10.
Proteomics ; 10(21): 3835-53, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20957756

RESUMEN

The prevention of mammary carcinoma by immunological strategies targeting the HER-2/neu receptor has proved to be effective in preclinical models. Thus, a well-characterized HER-2/neu oncogene-driven mammary carcinogenesis model was analysed by various profiling strategies following "triplex" vaccination to identify new candidate targets for breast cancer immunoprevention. 2-DE-based proteomic profiling of preneoplastic and tumour lesions versus normal and aged mammary tissue demonstrated that tumour progression was associated with an up-regulation of molecular chaperones including glucose-regulated protein (GRP)78 and of proteins favouring cell motility, which was in line with the corresponding transcriptomic profiling data. Furthermore, PROTEOMEX analyses suggested that naturally induced autoantibody responses occur during early phases of mammary cancer progression. Most of the cancer progression-induced antibodies targeted proteins of normal and preneoplastic mammary glands. However, three proteins were only recognized by sera obtained from vaccinated mice, including 2 isoforms of annexin A6. The distinct expression patterns for annexin A6 and GRP78 during tumour progression were further verified by western blot and/or immunoprecipitation. In addition, an inhibitor-mediated blockade of GRP78 expression in a model cell line caused a reduced cell growth. Thus, the proteome-based approaches applied in the murine BALB-NeuT model might indeed provide candidates for immunoprevention strategies in breast cancer.


Asunto(s)
Modelos Animales de Enfermedad , Neoplasias Mamarias Experimentales/metabolismo , Proteómica/métodos , Receptor ErbB-2/genética , Animales , Anticuerpos Antineoplásicos/sangre , Autoanticuerpos/sangre , Vacunas contra el Cáncer/farmacología , Línea Celular Tumoral , Análisis por Conglomerados , Progresión de la Enfermedad , Electroforesis en Gel Bidimensional , Chaperón BiP del Retículo Endoplásmico , Femenino , Perfilación de la Expresión Génica , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Immunoblotting , Inmunoglobulina G/sangre , Neoplasias Mamarias Experimentales/inmunología , Neoplasias Mamarias Experimentales/patología , Neoplasias Mamarias Experimentales/terapia , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Análisis de Componente Principal , Receptor ErbB-2/biosíntesis , Receptor ErbB-2/metabolismo , Reproducibilidad de los Resultados
11.
BMC Bioinformatics ; 11 Suppl 7: S13, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-21106120

RESUMEN

BACKGROUND: The Triplex cell vaccine is a cancer cellular vaccine that can prevent almost completely the mammary tumor onset in HER-2/neu transgenic mice. In a translational perspective, the activity of the Triplex vaccine was also investigated against lung metastases showing that the vaccine is an effective treatment also for the cure of metastases. A future human application of the Triplex vaccine should take into account several aspects of biological behavior of the involved entities to improve the efficacy of therapeutic treatment and to try to predict, for example, the outcomes of longer experiments in order to move faster towards clinical phase I trials. To help to address this problem, MetastaSim, a hybrid Agent Based - ODE model for the simulation of the vaccine-elicited immune system response against lung metastases in mice is presented. The model is used as in silico wet-lab. As a first application MetastaSim is used to find protocols capable of maximizing the total number of prevented metastases, minimizing the number of vaccine administrations. RESULTS: The model shows that it is possible to obtain "in silico" a 45% reduction in the number of vaccinations. The analysis of the results further suggests that any optimal protocol for preventing lung metastases formation should be composed by an initial massive vaccine dosage followed by few vaccine recalls. CONCLUSIONS: Such a reduction may represent an important result from the point of view of translational medicine to humans, since a downsizing of the number of vaccinations is usually advisable in order to minimize undesirable effects. The suggested vaccination strategy also represents a notable outcome. Even if this strategy is commonly used for many infectious diseases such as tetanus and hepatitis-B, it can be in fact considered as a relevant result in the field of cancer-vaccines immunotherapy. These results can be then used and verified in future "in vivo" experiments, and their outcome can be used to further improve and refine the model.


Asunto(s)
Vacunas contra el Cáncer/inmunología , Biología Computacional/métodos , Sistema Inmunológico/inmunología , Neoplasias Pulmonares/secundario , Neoplasias Mamarias Experimentales/patología , Modelos Biológicos , Animales , Femenino , Neoplasias Pulmonares/prevención & control , Neoplasias Mamarias Experimentales/terapia , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Metástasis de la Neoplasia/prevención & control , Reproducibilidad de los Resultados , Vacunación
12.
Breast J ; 16 Suppl 1: S39-41, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21050308

RESUMEN

Cancer immunoprevention posits that the enhancement of immune defenses in healthy individuals could control tumor onset. Immunoprevention of viral tumors is already implemented at the population level for human hepatocellular and cervical carcinomas. Altogether, viral vaccines could prevent more than 10% of all human tumors. The big question is whether immunoprevention can be applied to nonviral tumors, including breast cancer. Promising results were obtained in preclinical models, in particular in HER-2/neu transgenic mice, which are prone to mammary carcinoma development, using vaccines against HER-2/neu oncoprotein p185. The life expectancy of vaccinated mice was more than doubled. Protective immune mechanisms elicited by effective vaccines were mainly based on helper T cell cytokines, in particular γ-interferon, and anti-p185 antibodies. The term "oncoantigens" was coined to define those antigenic molecules that, like HER-2, are indispensable for tumor growth, thus representing the best class of targets for cancer immunoprevention. The study of immunopreventive vaccines against subsequent phases of neoplastic progression showed a dramatic loss of efficacy against established mammary carcinomas, whereas the prevention of micrometastasis growth was successful. Preclinical results provide useful indications for the translation of cancer immunoprevention to humans, and useful hints for cancer immunotherapy.


Asunto(s)
Neoplasias de la Mama/inmunología , Neoplasias de la Mama/prevención & control , Animales , Antígenos de Neoplasias/inmunología , Vacunas contra el Cáncer , Femenino , Humanos , Receptor ErbB-2/inmunología , Vacunas Virales
13.
Mol Cancer Ther ; 8(4): 754-61, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19372547

RESUMEN

Rhabdomyosarcoma is a tumor of striated muscle origin that displays defective myogenic differentiation. Terminal myogenesis switches off cell proliferation and migration, hence, the promotion of rhabdomyosarcoma differentiation should antagonize tumor growth and metastasis. Terminal myogenesis is controlled by cell-intrinsic myogenic transcription factors like myogenin and environmental mediators like interleukin 4 (IL-4). We studied whether the expression of myogenin or exposure to IL-4 could promote the myogenesis of poorly differentiating human rhabdomyosarcoma cells RD/12. Forced expression of myogenin amplified myosin expression and the formation of myotube-like elements, inhibited cell migration, and reduced the growth of local tumors and liver metastases in immunodepressed mice. In contrast, exposure to IL-4 promoted cell proliferation and survival, especially at high cell density, inhibited myogenin expression, and myogenesis. Moreover, IL-4 stimulated the directed migration of cells with low myogenin levels, but not of cells with higher (spontaneous or forced) levels. Thus, IL-4, which was known to promote late stages of normal myogenesis, favors growth and migration, and inhibits further differentiation of the myogenic stages attained by rhabdomyosarcoma cells. Strategies to increase myogenin expression and block IL-4 could simultaneously reduce growth and migration, and enhance terminal differentiation of rhabdomyosarcoma, thus contributing to the control of tumor growth and metastatic spread.


Asunto(s)
Antineoplásicos/farmacología , Diferenciación Celular , Interleucina-4/farmacología , Neoplasias Hepáticas/prevención & control , Miogenina/metabolismo , Rabdomiosarcoma Embrionario/patología , Rabdomiosarcoma Embrionario/prevención & control , Animales , Apoptosis/fisiología , Movimiento Celular/fisiología , Proliferación Celular , Proteínas de Unión al ADN/fisiología , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/secundario , Ratones , Ratones Noqueados , Ratones Desnudos , Desarrollo de Músculos , Miogenina/antagonistas & inhibidores , Miogenina/genética , Miosinas/genética , Miosinas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Rabdomiosarcoma Embrionario/metabolismo , Células Tumorales Cultivadas
14.
Future Oncol ; 5(9): 1449-75, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19903072

RESUMEN

Rhabdomyosarcoma is a group of soft-tissue sarcomas that share features of skeletal myogenesis, but show extensive heterogeneity in histology, age and site of onset, and prognosis. This review matches recent molecular data with biological features of rhabdomyosarcoma. Alterations in molecular pathways, animal models, cell of origin and potential new therapeutic targets are discussed.


Asunto(s)
Modelos Animales de Enfermedad , Rabdomiosarcoma/patología , Neoplasias de los Tejidos Blandos/patología , Animales , Humanos , Rabdomiosarcoma/genética , Rabdomiosarcoma/terapia , Transducción de Señal , Neoplasias de los Tejidos Blandos/genética , Neoplasias de los Tejidos Blandos/terapia
15.
Cancers (Basel) ; 11(12)2019 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-31783695

RESUMEN

The TS/A cell line was established in 1983 from a spontaneous mammary tumor arisen in an inbred BALB/c female mouse. Its features (heterogeneity, low immunogenicity and metastatic ability) rendered the TS/A cell line suitable as a preclinical model for studies on tumor-host interactions and for gene therapy approaches. The integrated biological profile of TS/A resulting from the review of the literature could be a path towards the description of a precision experimental model of mammary cancer.

16.
Cancers (Basel) ; 11(4)2019 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-30979001

RESUMEN

(1) Background: Human epidermal growth factor receptor 2 (HER2)/neu-driven carcinogenesis is delayed by preventive vaccines able to elicit autochthonous antibodies against HER2/neu. Since cooperation between different receptor tyrosine kinases (RTKs) can occur in human as well as in experimental tumors, we investigated the set-up of DNA and cell vaccines to elicit an antibody response co-targeting two RTKs: HER2/neu and the Insulin-like Growth Factor Receptor-1 (IGF1R). (2) Methods: Plasmid vectors carrying the murine optimized IGF1R sequence or the human IGF1R isoform were used as electroporated DNA vaccines. IGF1R plasmids were transfected in allogeneic HER2/neu-positive IL12-producing murine cancer cells to obtain adjuvanted cell vaccines co-expressing HER2/neu and IGF1R. Vaccination was administered in the preneoplastic stage to mice prone to develop HER2/neu-driven, IGF1R-dependent rhabdomyosarcoma. (3) Results: Electroporated DNA vaccines for murine IGF1R did not elicit anti-mIGF1R antibodies, even when combined with Treg-depletion and/or IL12, while DNA vaccines carrying the human IGF1R elicited antibodies recognizing only the human IGF1R isoform. Cell vaccines co-expressing HER2/neu and murine or human IGF1R succeeded in eliciting antibodies recognizing the murine IGF1R isoform. Cell vaccines co-targeting HER2/neu and murine IGF1R induced the highest level of anti-IGF1R antibodies and nearly significantly delayed the onset of spontaneous rhabdomyosarcomas. (4) Conclusions: Multi-engineered adjuvanted cancer cell vaccines can break the tolerance towards a highly tolerized RTK, such as IGF1R. Cell vaccines co-targeting HER2/neu and IGF1R elicited low levels of specific antibodies that slightly delayed onset of HER2/neu-driven, IGF1R-dependent tumors.

17.
Sci Rep ; 9(1): 12174, 2019 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-31434953

RESUMEN

Standard therapy of osteosarcoma (OS) and Ewing sarcoma (EW) rests on cytotoxic regimes, which are largely unsuccessful in advanced patients. Preclinical models are needed to break this impasse. A panel of patient-derived xenografts (PDX) was established by implantation of fresh, surgically resected osteosarcoma (OS) and Ewing sarcoma (EW) in NSG mice. Engraftment was obtained in 22 of 61 OS (36%) and 7 of 29 EW (24%). The success rate in establishing primary cell cultures from OS was lower than the percentage of PDX engraftment in mice, whereas the reverse was observed for EW; the implementation of both in vivo and in vitro seeding increased the proportion of patients yielding at least one workable model. The establishment of in vitro cultures from PDX was highly efficient in both tumor types, reaching 100% for EW. Morphological and immunohistochemical (SATB2, P-glycoprotein 1, CD99, caveolin 1) studies and gene expression profiling showed a remarkable similarity between patient's tumor and PDX, which was maintained over several passages in mice, whereas cell cultures displayed a lower correlation with human samples. Genes differentially expressed between OS original tumor and PDX mostly belonged to leuykocyte-specific pathways, as human infiltrate is gradually replaced by murine leukocytes during growth in mice. In EW, which contained scant infiltrates, no gene was differentially expressed between the original tumor and the PDX. A novel therapeutic combination of anti-CD99 diabody C7 and irinotecan was tested against two EW PDX; both drugs inhibited PDX growth, the addition of anti-CD99 was beneficial when chemotherapy alone was less effective. The panel of OS and EW PDX faithfully mirrored morphologic and genetic features of bone sarcomas, representing reliable models to test therapeutic approaches.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias Óseas/tratamiento farmacológico , Osteosarcoma/tratamiento farmacológico , Sarcoma de Ewing/tratamiento farmacológico , Antígeno 12E7/inmunología , Animales , Anticuerpos/uso terapéutico , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica , Humanos , Irinotecán/uso terapéutico , Ratones , Ratones Endogámicos NOD , Ratones SCID , Osteosarcoma/metabolismo , Osteosarcoma/patología , Sarcoma de Ewing/metabolismo , Sarcoma de Ewing/patología , Trasplante Heterólogo , Células Tumorales Cultivadas , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
18.
Clin Cancer Res ; 13(4): 1322-30, 2007 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-17317844

RESUMEN

PURPOSE: Small-molecule insulin-like growth factor-I receptor (IGF-IR)-specific tyrosine kinase inhibitors have been recently proposed as clinically viable approaches to impair IGF-IR functions. NVP-AEW541 seems one of the most promising agents. In this article, we point out its effects against migration, metastasis, vasculogenicity, and angiogenesis of Ewing's sarcoma cells. EXPERIMENTAL DESIGN: In vivo NVP-AEW541 effectiveness was analyzed against TC-71 Ewing's sarcoma growth and bone metastasis after cell inoculation in athymic mice. Activity of the compound against angiogenesis as well as vasculogenesis properties was also considered both in vitro and in xenografts. Serum glucose, urea, transaminase levels, as well as other signs of distress were checked in mice treated with the IGF-IR inhibitor. RESULTS: Significant inhibition of migration, metastasis, vasculogenicity, and angiogenesis was recorded after treatment of Ewing's sarcoma cells with NVP-AEW541. In view of its application and the similarity of insulin receptor and IGF-IR, diabetogenic side effects were considered. We observed a significant decrease of glucose blood serum due to increased glucose uptake at cellular level and an increase in urea concentration. Moreover, an initial weight loss was observed in mice bearing tumors. All these side effects were similarly detected in mice treated with vincristine. After the first days of treatment, all the animals started to grow again. CONCLUSIONS: Our results globally reinforce the idea that IGF-IR inhibitor NVP-AEW541 could have a role in future combined therapies and suggest to pursue a thorough molecular analysis of the metabolic activity of IGF-IR to avoid possible side effects of these inhibitors.


Asunto(s)
Pirimidinas/farmacología , Pirroles/farmacología , Receptor IGF Tipo 1/antagonistas & inhibidores , Sarcoma de Ewing/tratamiento farmacológico , Animales , Femenino , Humanos , Ratones , Ratones Desnudos , Metástasis de la Neoplasia , Receptor IGF Tipo 1/metabolismo , Sarcoma de Ewing/irrigación sanguínea , Sarcoma de Ewing/metabolismo , Sarcoma de Ewing/patología , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Oncoimmunology ; 7(8): e1465164, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30221061

RESUMEN

This study evaluated the effects of combining an OX40 agonistic antibody (aOX40) with a cell vaccine targeting HER2/neu, called "Triplex". Such HER2/neu cell vaccine included two biological adjuvants (interleukin 12 (IL12) and allogeneic histocompatibility antigens) and was previously found able to prevent autochthonous HER2/neu-driven mammary carcinogenesis. Timing of aOX40 administration, concomitantly or after cell vaccination, gave opposite results. Unexpectedly, vaccine efficacy was hampered by concomitant OX40 triggering. Such decreased immunoprevention was likely due to a reduced induction of anti-HER2/neu antibodies and to a higher level of Treg activation. On the contrary, aOX40 administration after the completion of vaccination slightly but significantly increased immunopreventive vaccine efficacy, and led to increased production of GM-CSF and IL10. In conclusion, OX40 triggering can either impair or ameliorate immunoprevention of HER2/neu-driven mammary carcinogenesis depending on the schedule of aOX40 administration.

20.
Mol Cancer Ther ; 17(9): 1881-1892, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29959201

RESUMEN

The identification of new therapeutic strategies against osteosarcoma, the most common primary bone tumor, continues to be a primary goal to improve the outcomes of patients refractory to conventional chemotherapy. Osteosarcoma originates from the transformation of mesenchymal stem cells (MSC) and/or osteoblast progenitors, and the loss of differentiation is a common biological osteosarcoma feature, which has strong significance in predicting tumor aggressiveness. Thus, restoring differentiation through epigenetic reprogramming is potentially exploitable for therapeutic benefits. Here, we demonstrated that the novel nonnucleoside DNMT inhibitor (DNMTi) MC3343 affected tumor proliferation by blocking osteosarcoma cells in G1 or G2-M phases and induced osteoblastic differentiation through the specific reexpression of genes regulating this physiologic process. Although MC3343 has a similar antiproliferative effect as 5azadC, the conventional FDA-approved nucleoside inhibitor of DNA methylation, its effects on cell differentiation are distinct. Induction of the mature osteoblast phenotype coupled with a sustained cytostatic response was also confirmed in vivo when MC3343 was used against a patient-derived xenograft (PDX). In addition, MC3343 displayed synergistic effects with doxorubicin and cisplatin (CDDP), two major chemotherapeutic agents used to treat osteosarcoma. Specifically, MC3343 increased stable doxorubicin bonds to DNA, and combined treatment resulted in sustained DNA damage and increased cell death. Overall, this nonnucleoside DNMTi is an effective novel agent and is thus a potential therapeutic option for patients with osteosarcoma who respond poorly to preadjuvant chemotherapy. Mol Cancer Ther; 17(9); 1881-92. ©2018 AACR.


Asunto(s)
Aminoquinolinas/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Benzamidas/farmacología , Neoplasias Óseas/tratamiento farmacológico , ADN (Citosina-5-)-Metiltransferasa 1/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Osteosarcoma/tratamiento farmacológico , Ensayos Antitumor por Modelo de Xenoinjerto , Aminoquinolinas/administración & dosificación , Animales , Benzamidas/administración & dosificación , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Línea Celular Tumoral , Cisplatino/administración & dosificación , ADN (Citosina-5-)-Metiltransferasa 1/genética , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Doxorrubicina/administración & dosificación , Inhibidores Enzimáticos/administración & dosificación , Inhibidores Enzimáticos/química , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Ratones Noqueados , Osteosarcoma/genética , Osteosarcoma/metabolismo , Quinolinas/química , Carga Tumoral/efectos de los fármacos , Carga Tumoral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA