Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
FASEB J ; 29(5): 1859-68, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25630970

RESUMEN

Bicuspid aortic valves calcify at a significantly higher rate than normal aortic valves, a process that involves increased inflammation. Because we have previously found that bicuspid aortic valve experience greater stretch, we investigated the potential connection between stretch and inflammation in human aortic valve interstitial cells (AVICs). Microarray, quantitative PCR (qPCR), and protein assays performed on AVICs exposed to cyclic stretch showed that stretch was sufficient to increase expression of interleukin and metalloproteinase family members by more than 1.5-fold. Conditioned medium from stretched AVICs was sufficient to activate leukocytes. microRNA sequencing and qPCR experiments demonstrated that miR-148a-3p was repressed in both stretched AVICs (43% repression) and, as a clinical correlate, human bicuspid aortic valves (63% reduction). miR-148a-3p was found to be a novel repressor of IKBKB based on data from qPCR, luciferase, and Western blot experiments. Furthermore, increasing miR-148a-3p levels in AVICs was sufficient to decrease NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) signaling and NF-κB target gene expression. Our data demonstrate that stretch-mediated activation of inflammatory pathways is at least partly the result of stretch-repression of miR-148a-3p and a consequent failure to repress IKBKB. To our knowledge, we are the first to report that cyclic stretch of human AVICs activates inflammatory genes in a tissue-autonomous manner via a microRNA that regulates a central inflammatory pathway.


Asunto(s)
Válvula Aórtica/anomalías , Biomarcadores/metabolismo , Enfermedades de las Válvulas Cardíacas/metabolismo , Quinasa I-kappa B/metabolismo , Inflamación/genética , MicroARNs/genética , FN-kappa B/metabolismo , Válvula Aórtica/inmunología , Válvula Aórtica/metabolismo , Enfermedad de la Válvula Aórtica Bicúspide , Western Blotting , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Ensayo de Inmunoadsorción Enzimática , Perfilación de la Expresión Génica , Enfermedades de las Válvulas Cardíacas/inmunología , Humanos , Quinasa I-kappa B/genética , Inflamación/inmunología , Inflamación/patología , Monocitos/citología , Monocitos/metabolismo , FN-kappa B/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Estrés Fisiológico
2.
J Mol Cell Cardiol ; 79: 133-44, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25446186

RESUMEN

Perturbed biomechanical stimuli are thought to be critical for the pathogenesis of a number of congenital heart defects, including Hypoplastic Left Heart Syndrome (HLHS). While embryonic cardiomyocytes experience biomechanical stretch every heart beat, their molecular responses to biomechanical stimuli during heart development are poorly understood. We hypothesized that biomechanical stimuli activate specific signaling pathways that impact proliferation, gene expression and myocyte contraction. The objective of this study was to expose embryonic mouse cardiomyocytes (EMCM) to cyclic stretch and examine key molecular and phenotypic responses. Analysis of RNA-Sequencing data demonstrated that gene ontology groups associated with myofibril and cardiac development were significantly modulated. Stretch increased EMCM proliferation, size, cardiac gene expression, and myofibril protein levels. Stretch also repressed several components belonging to the Transforming Growth Factor-ß (Tgf-ß) signaling pathway. EMCMs undergoing cyclic stretch had decreased Tgf-ß expression, protein levels, and signaling. Furthermore, treatment of EMCMs with a Tgf-ß inhibitor resulted in increased EMCM size. Functionally, Tgf-ß signaling repressed EMCM proliferation and contractile function, as assayed via dynamic monolayer force microscopy (DMFM). Taken together, these data support the hypothesis that biomechanical stimuli play a vital role in normal cardiac development and for cardiac pathology, including HLHS.


Asunto(s)
Embrión de Mamíferos/citología , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Transducción de Señal , Estrés Mecánico , Factor de Crecimiento Transformador beta/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Tamaño de la Célula , Regulación de la Expresión Génica/efectos de los fármacos , Ontología de Genes , Ratones , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Miofibrillas/metabolismo , Análisis de Secuencia de ARN , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta/farmacología
3.
Circulation ; 130(14): 1179-91, 2014 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-25062690

RESUMEN

BACKGROUND: Pulmonary veno-occlusive disease is caused by excessive cell proliferation and fibrosis, which obliterate the lumen of pulmonary venules, leading to pulmonary hypertension, right ventricular failure, and death. This condition has no effective treatment and a 5-year survival of <5%. Understanding the mechanism of this disease and designing effective therapies are urgently needed. METHODS AND RESULTS: We show that mice with homozygous deletion of the Ets transcription factor Erg die between embryonic day 16.5 and 3 months of age as a result of pulmonary veno-occlusive disease, capillary hemorrhage, and pancytopenia. We demonstrate that Erg binds to and serves as a transcriptional activator of the G-protein-coupled receptor gene Aplnr, the expression of which is uniquely specific for venous endothelium and that knockout of either Erg or Aplnr results in pulmonary venule-specific endothelial proliferation in vitro. We show that mice with either homozygous-global or endothelium-directed deletion of Aplnr manifest pulmonary veno-occlusive disease and right heart failure, detectable at 8 months of age. Levels of pulmonary ERG and APLNR in patients with pulmonary veno-occlusive disease undergoing lung transplantation were significantly lower than those of control subjects. CONCLUSIONS: Our results suggest that ERG and APLNR are essential for endothelial homeostasis in venules in the lung and that perturbation in ERG-APLNR signaling is crucial for the development of pulmonary veno-occlusive disease. We identify this pathway as a potential therapeutic target for the treatment of this incurable disease.


Asunto(s)
Proteínas Oncogénicas/genética , Enfermedad Veno-Oclusiva Pulmonar/patología , Receptores Acoplados a Proteínas G/genética , Transactivadores/genética , Factores de Transcripción/genética , Animales , Receptores de Apelina , Proliferación Celular , Células Cultivadas , Células Endoteliales/patología , Femenino , Expresión Génica/fisiología , Humanos , Operón Lac , Trasplante de Pulmón , Masculino , Ratones , Ratones Noqueados , Proteínas Oncogénicas/metabolismo , Fenotipo , Regiones Promotoras Genéticas/fisiología , Arteria Pulmonar/patología , Venas Pulmonares/patología , Enfermedad Veno-Oclusiva Pulmonar/cirugía , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/fisiología , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Regulador Transcripcional ERG
4.
Neuroophthalmology ; 39(4): 187-190, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27928354

RESUMEN

We report the case of an 11-year-old boy who presented with sudden esotropia, binocular diplopia, and blurred vision. The patient was neurologically normal. He had a large, constant, comitant, alternating esotropia associated with minimal accommodative spasm. Ocular motility and pupillary reactions were normal. He was diagnosed to have spasm of the near reflex presenting as acute onset of esotropia. The esotropia was persistent despite treatment and eventually resolved with prolonged cycloplegic therapy. This unusual case illustrates that spasm of the near reflex can have unique and variable presentations. Spasm of the near reflex needs to be considered in the differential diagnosis of every case of acute, acquired, comitant esotropia. This is the first case of spasm of the near reflex where persistent esotropia is reported in the absence of any neurological disorder.

5.
Clin Cases Miner Bone Metab ; 12(1): 60-1, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26136799

RESUMEN

Sixteen-year-old girl presented with generalized body pain with avulsion of tendoachillis on minimal trauma. Surgical repair led to complete recovery. Investigations revealed severe osteomalacia, which improved on supplementation. Surgical difficulty encountered was soft nature of bone, difficult attachment of tendon and delayed rehabilitation. Vitamin D evaluation is essential in young females presenting with generalized body pain and pain at attachments of strong muscles with bones.

6.
J Am Heart Assoc ; 11(17): e025864, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36000433

RESUMEN

Background The systemic inflammation that occurs after exposure to cardiopulmonary bypass (CPB), which is especially severe in neonatal patients, is associated with poorer outcomes and is not well understood. In order to gain deeper insight into how exposure to bypass activates inflammatory responses in circulating leukocytes, we studied changes in microRNA (miRNA) expression during and after exposure to bypass. miRNAs are small noncoding RNAs that have important roles in modulating protein levels and function of cells. Methods and Results We performed miRNA-sequencing on leukocytes isolated from neonatal patients with CPB (n=5) at 7 time points during the process of CPB, including before the initiation of bypass, during bypass, and at 3 time points during the first 24 hours after weaning from bypass. We identified significant differentially expressed miRNAs using generalized linear regression models, and miRNAs were defined as statistically significant using a false discovery rate-adjusted P<0.05. We identified gene targets of these miRNAs using the TargetScan database and identified significantly enriched biological pathways for these gene targets. We identified 54 miRNAs with differential expression during and after CPB. These miRNAs clustered into 3 groups, including miRNAs that were increased during and after CPB (3 miRNAs), miRNAs that decreased during and after CPB (10 miRNAs), and miRNAs that decreased during CPB but then increased 8 to 24 hours after CPB. A total of 38.9% of the target genes of these miRNAs were significantly differentially expressed in our previous study. miRNAs with altered expression levels are predicted to significantly modulate pathways related to inflammation and signal transduction. Conclusions The unbiased profiling of the miRNA changes that occur in the circulating leukocytes of patients with bypass provides deeper insight into the mechanisms that underpin the systemic inflammatory response that occurs in patients after exposure to CPB. These data will help the development of novel treatments and biomarkers for bypass-associated inflammation.


Asunto(s)
Puente Cardiopulmonar , MicroARNs , Biomarcadores , Puente Cardiopulmonar/efectos adversos , Humanos , Recién Nacido , Inflamación/etiología , Leucocitos/metabolismo , MicroARNs/genética , MicroARNs/metabolismo
8.
J Clin Invest ; 131(11)2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33857019

RESUMEN

Dysregulated protein degradative pathways are increasingly recognized as mediators of human disease. This mechanism may have particular relevance to desmosomal proteins that play critical structural roles in both tissue architecture and cell-cell communication, as destabilization/breakdown of the desmosomal proteome is a hallmark of genetic-based desmosomal-targeted diseases, such as the cardiac disease arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C). However, no information exists on whether there are resident proteins that regulate desmosomal proteome homeostasis. Here, we uncovered a cardiac constitutive photomorphogenesis 9 (COP9) desmosomal resident protein complex, composed of subunit 6 of the COP9 signalosome (CSN6), that enzymatically restricted neddylation and targeted desmosomal proteome degradation. CSN6 binding, localization, levels, and function were affected in hearts of classic mouse and human models of ARVD/C affected by desmosomal loss and mutations, respectively. Loss of desmosomal proteome degradation control due to junctional reduction/loss of CSN6 and human desmosomal mutations destabilizing junctional CSN6 were also sufficient to trigger ARVD/C in mice. We identified a desmosomal resident regulatory complex that restricted desmosomal proteome degradation and disease.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Displasia Ventricular Derecha Arritmogénica/metabolismo , Complejo del Señalosoma COP9/metabolismo , Desmosomas/metabolismo , Proteolisis , Proteoma/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Displasia Ventricular Derecha Arritmogénica/genética , Complejo del Señalosoma COP9/genética , Desmosomas/genética , Desmosomas/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados , Proteoma/genética
9.
JCI Insight ; 6(1)2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33232305

RESUMEN

Cardiopulmonary bypass (CPB) is required during most cardiac surgeries. CBP drives systemic inflammation and multiorgan dysfunction that is especially severe in neonatal patients. Limited understanding of molecular mechanisms underlying CPB-associated inflammation presents a significant barrier to improve clinical outcomes. To better understand these clinical issues, we performed mRNA sequencing on total circulating leukocytes from neonatal patients undergoing CPB. Our data identify myeloid cells, particularly monocytes, as the major cell type driving transcriptional responses to CPB. Furthermore, IL-8 and TNF-α were inflammatory cytokines robustly upregulated in leukocytes from both patients and piglets exposed to CPB. To delineate the molecular mechanism, we exposed THP-1 human monocytic cells to CPB-like conditions, including artificial surfaces, high shear stress, and cooling/rewarming. Shear stress was found to drive cytokine upregulation via calcium-dependent signaling pathways. We also observed that a subpopulation of THP-1 cells died via TNF-α-mediated necroptosis, which we hypothesize contributes to post-CPB inflammation. Our study identifies a shear stress-modulated molecular mechanism that drives systemic inflammation in pediatric CPB patients. These are also the first data to our knowledge to demonstrate that shear stress causes necroptosis. Finally, we observe that calcium and TNF-α signaling are potentially novel targets to ameliorate post-CPB inflammation.


Asunto(s)
Puente Cardiopulmonar/efectos adversos , Citocinas/genética , Monocitos/inmunología , Monocitos/patología , Animales , Animales Recién Nacidos , Señalización del Calcio , Citocinas/biosíntesis , Femenino , Cardiopatías Congénitas/cirugía , Humanos , Lactante , Recién Nacido , Mediadores de Inflamación/metabolismo , Interleucina-8/biosíntesis , Interleucina-8/genética , Masculino , Modelos Animales , Monocitos/fisiología , Necroptosis/genética , Necroptosis/fisiología , RNA-Seq , Estrés Mecánico , Sus scrofa , Síndrome de Respuesta Inflamatoria Sistémica/etiología , Síndrome de Respuesta Inflamatoria Sistémica/genética , Síndrome de Respuesta Inflamatoria Sistémica/inmunología , Células THP-1 , Factor de Necrosis Tumoral alfa/biosíntesis , Factor de Necrosis Tumoral alfa/genética , Regulación hacia Arriba
10.
J Heart Valve Dis ; 19(4): 459-65, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20845893

RESUMEN

BACKGROUND AND AIM OF THE STUDY: Bicuspid aortic valve (BAV), the most common form of congenital heart disease, is a leading cause of aortic stenosis (AS) and aortic insufficiency (AI). AS is typically caused by calcific valve disease. Recently, microRNAs (miRNAs) have been shown to modulate gene expression. The study aim was to examine the miRNAs that were altered in the aortic valve leaflets of patients with AS compared to those in patients with AI. In-vitro experiments were also carried out to determine if these miRNAs could modulate calcification-related genes. METHODS: Aortic valve samples (fused and unfused leaflets) were collected from nine male patients (mean age 44.9 +/- 13.8 years) undergoing aortic valve replacement (AVR). PIQOR miRXplore Microarrays containing 1,421 miRNAs were used and hybridized to fused leaflet samples labeled with Cy5; unfused samples were used as controls and labeled with Cy3. A quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was performed to validate the miRNA array results. Cultured human aortic valve interstitial cells (AVICs) were treated with miRNA mimics, and qRT-PCR was carried out to determine any changes in mRNAs. RESULTS: By microarray analysis, seven miRNAs were shown to be statistically different between the AS and AI patients. In the stenotic samples, the MiR-26a and miR-195 levels were shown (by qRT-PCR) to be reduced by 65% and 59%, respectively (p < 0.05), and MiR-30b to be reduced by 62% (p < 0.06). Human AVICs treated with miR-26a or miR-30b mimics showed decreased mRNA levels of calcification-related genes. MiR-26a repressed BMP2 by 36%, alkaline phosphatase (ALPL) by 38%, and SMAD1 by 26%, while MiR-30b reduced the expression of SMAD1 by 18% and of SMAD3 by 12%. In contrast, miR-195-treated AVICs had increased mRNA levels of calcification-related genes, such as BMP2 by 68% and RUNX2 by 11%. CONCLUSION: MiR-26a, miR-30b, and miR-195 were each decreased in the aortic valves of patients requiring AVR due to AS, compared to those requiring replacement due to AI. These miRNAs appear to modulate calcification-related genes in vitro.


Asunto(s)
Insuficiencia de la Válvula Aórtica/genética , Estenosis de la Válvula Aórtica/genética , Válvula Aórtica/metabolismo , Calcinosis/genética , Marcadores Genéticos , Cardiopatías Congénitas/genética , MicroARNs/metabolismo , Adulto , Válvula Aórtica/anomalías , Válvula Aórtica/cirugía , Insuficiencia de la Válvula Aórtica/cirugía , Estenosis de la Válvula Aórtica/cirugía , Calcinosis/cirugía , Células Cultivadas , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica , Cardiopatías Congénitas/cirugía , Implantación de Prótesis de Válvulas Cardíacas , Humanos , Masculino , Persona de Mediana Edad , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , San Francisco
11.
J Mol Cell Cardiol ; 47(6): 828-34, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19695258

RESUMEN

Calcific aortic stenosis is the third leading cause of adult heart disease and the most common form of acquired valvular disease in developed countries. However, the molecular pathways leading to calcification are poorly understood. We reported two families in which heterozygous mutations in NOTCH1 caused bicuspid aortic valve and severe aortic valve calcification. NOTCH1 is part of a highly conserved signaling pathway involved in cell fate decisions, cell differentiation, and cardiac valve formation. In this study, we examined the mechanism by which NOTCH1 represses aortic valve calcification. Heterozygous Notch1-null (Notch1(+/)(-)) mice had greater than fivefold more aortic valve calcification than age- and sex-matched wildtype littermates. Inhibition of Notch signaling in cultured sheep aortic valve interstitial cells (AVICs) also increased calcification more than fivefold and resulted in gene expression typical of osteoblasts. We found that Notch1 normally represses the gene encoding bone morphogenic protein 2 (Bmp2) in murine aortic valves in vivo and in aortic valve cells in vitro. siRNA-mediated knockdown of Bmp2 blocked the calcification induced by Notch inhibition in AVICs. These findings suggest that Notch1 signaling in aortic valve cells represses osteoblast-like calcification pathways mediated by Bmp2.


Asunto(s)
Válvula Aórtica/metabolismo , Válvula Aórtica/patología , Osteogénesis , Receptor Notch1/metabolismo , Animales , Proteína Morfogenética Ósea 2/genética , Proteína Morfogenética Ósea 2/metabolismo , Calcinosis/metabolismo , Calcinosis/patología , Células Cultivadas , Regulación de la Expresión Génica , Masculino , Ratones , Modelos Biológicos , Osteoblastos/metabolismo , Osteoblastos/patología , Fenotipo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptor Notch1/genética , Ovinos , Transducción de Señal
12.
Eur Spine J ; 18 Suppl 2: 254-7, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19330363

RESUMEN

Bradycardia and rarely cardiac arrest as a complication of cervical spine injury due to reduced sympathetic activity is well known, which usually settles down in 4-6 weeks of injury. There are few case reports in literature of high cervical spinal cord injury requiring permanent cardiac pacemaker due to this complication, but an injury as low as cervico-dorsal junction requiring permanent cardiac pacemaker has never been reported. A 47-year-old male suffered traumatic C7-D1 dislocation and continued to have severe bradycardia with multiple episodes of cardiac arrest till 2 months after injury, which finally warranted permanent cardiac pacemaker as a life saving measure. Following permanent cardiac pacemaker no cardiac arrest occurred and the patient was successfully rehabilitated. The case directs our attention to a rare complication of cardiac arrest occurring in an injury as low as cervico-dorsal junction when all other causes are ruled out and shows importance of using permanent cardiac pacemaker to ensure patient safety in community.


Asunto(s)
Paro Cardíaco/etiología , Paro Cardíaco/terapia , Marcapaso Artificial , Traumatismos de la Médula Espinal/complicaciones , Vértebras Cervicales/patología , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Resultado del Tratamiento
13.
J Thorac Cardiovasc Surg ; 158(3): 882-890.e4, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31005300

RESUMEN

OBJECTIVES: Brain injury, leading to long-term neurodevelopmental deficits, is a major complication in neonates undergoing cardiac surgeries. Because the striatum is one of the most vulnerable brain regions, we used mRNA sequencing to unbiasedly identify transcriptional changes in the striatum after cardiopulmonary bypass and associated deep hypothermic circulatory arrest. METHODS: Piglets were subjected to cardiopulmonary bypass with deep hypothermic circulatory arrest at 18°C for 30 minutes and then recovered for 6 hours. mRNA sequencing was performed to compare changes in gene expression between the striatums of sham control and deep hypothermic circulatory arrest brains. RESULTS: We found 124 significantly upregulated genes and 74 significantly downregulated genes in the striatums of the deep hypothermic circulatory arrest group compared with the sham controls. Pathway enrichment analysis demonstrated that inflammation and apoptosis were the strongest pathways activated after surgery. Chemokines CXCL9, CXCL10, and CCL2 were the top upregulated genes with 32.4-fold, 22.2-fold, and 17.6-fold increased expression, respectively, in the deep hypothermic circulatory arrest group compared with sham controls. Concomitantly, genes involved in cell proliferation, cell-cell adhesion, and structural integrity were significantly downregulated in the deep hypothermic circulatory arrest group. Analysis of promoter regions of all upregulated genes revealed over-representation of nuclear factor-kB transcription factor binding sites. CONCLUSIONS: Our study provides a comprehensive view of global transcriptional changes in the striatum after deep hypothermic circulatory arrest and found strong activation of both inflammatory and apoptotic signaling pathways in the deep hypothermic circulatory arrest group. Nuclear factor-kB, a key driver of inflammation, appears to be an upstream regulator of the majority of the upregulated genes; hence, nuclear factor-kB inhibitors could potentially be tested for beneficial effects on neurologic outcome.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Apoptosis/genética , Paro Circulatorio Inducido por Hipotermia Profunda/efectos adversos , Citocinas/genética , Perfilación de la Expresión Génica , Mediadores de Inflamación , Neostriado/patología , Transcriptoma , Animales , Animales Recién Nacidos , Proteínas Reguladoras de la Apoptosis/metabolismo , Citocinas/metabolismo , Mediadores de Inflamación/metabolismo , Neostriado/metabolismo , Transducción de Señal , Sus scrofa
14.
JCI Insight ; 4(19)2019 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-31513548

RESUMEN

Perturbations in biomechanical stimuli during cardiac development contribute to congenital cardiac defects such as hypoplastic left heart syndrome (HLHS). This study sought to identify stretch-responsive pathways involved in cardiac development. miRNA-Seq identified miR-486 as being increased in cardiomyocytes exposed to cyclic stretch in vitro. The right ventricles (RVs) of patients with HLHS experienced increased stretch and had a trend toward higher miR-486 levels. Sheep RVs dilated from excessive pulmonary blood flow had 60% more miR-486 compared with control RVs. The left ventricles of newborn mice treated with miR-486 mimic were 16.9%-24.6% larger and displayed a 2.48-fold increase in cardiomyocyte proliferation. miR-486 treatment decreased FoxO1 and Smad signaling while increasing the protein levels of Stat1. Stat1 associated with Gata-4 and serum response factor (Srf), 2 key cardiac transcription factors with protein levels that increase in response to miR-486. This is the first report to our knowledge of a stretch-responsive miRNA that increases the growth of the ventricle in vivo.


Asunto(s)
Ventrículos Cardíacos/crecimiento & desarrollo , Síndrome del Corazón Izquierdo Hipoplásico/genética , MicroARNs/metabolismo , Animales , Animales Recién Nacidos , Fenómenos Biomecánicos , Proliferación Celular/fisiología , Células Cultivadas , Ventrículos Cardíacos/metabolismo , Humanos , Síndrome del Corazón Izquierdo Hipoplásico/patología , Síndrome del Corazón Izquierdo Hipoplásico/fisiopatología , Mecanotransducción Celular/fisiología , Ratones , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/fisiología , Factor de Transcripción STAT1/metabolismo , Ovinos
16.
Eur Spine J ; 16 Suppl 3: 322-5, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17149636

RESUMEN

Presacral region is one of the difficult regions for drainage of abscess as the approaches described for this carry a lot of morbidities. Transpedicular approach is described for the drainage of presacral abscess. Further, tuberculous abscess as a cause of cauda equina syndrome is reported. Patient had complete neurological recovery within weeks of drainage of abscess. Transpedicular drainage of presacral abscess is a safer option for recently developed neurological deficit. Late presentation may need anterior approach, which is associated with increased morbidity.


Asunto(s)
Absceso/cirugía , Descompresión Quirúrgica/métodos , Infección Pélvica/cirugía , Polirradiculopatía/cirugía , Sacro/cirugía , Succión/métodos , Tuberculosis de la Columna Vertebral/cirugía , Absceso/microbiología , Absceso/patología , Adulto , Antituberculosos/uso terapéutico , Descompresión Quirúrgica/instrumentación , Fluoroscopía , Humanos , Cifosis/etiología , Cifosis/patología , Cifosis/cirugía , Dolor de la Región Lumbar/etiología , Imagen por Resonancia Magnética , Masculino , Infección Pélvica/microbiología , Infección Pélvica/patología , Polirradiculopatía/microbiología , Polirradiculopatía/patología , Sacro/microbiología , Sacro/patología , Fusión Vertebral , Succión/instrumentación , Resultado del Tratamiento , Tuberculosis de la Columna Vertebral/complicaciones , Tuberculosis de la Columna Vertebral/patología
17.
Front Pediatr ; 5: 25, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28275592

RESUMEN

INTRODUCTION: Hypoplastic left heart syndrome (HLHS) is a congenital condition with an underdeveloped left ventricle (LV) that provides inadequate systemic blood flow postnatally. The development of HLHS is postulated to be due to altered biomechanical stimuli during gestation. Predicting LV size at birth using mid-gestation fetal echocardiography is a clinical challenge critical to prognostic counseling. HYPOTHESIS: We hypothesized that decreased ventricular filling in utero due to mitral stenosis may reduce LV growth in the fetal heart via mechanical growth signaling. METHODS: We developed a novel finite element model of the human fetal heart in which cardiac myocyte growth rates are a function of fiber and cross-fiber strains, which is affected by altered ventricular filling, to simulate alterations in LV growth and remodeling. Model results were tested with echocardiogram measurements from normal and HLHS fetal hearts. RESULTS: A strain-based fetal growth model with a normal 22-week ventricular filling (1.04 mL) was able to replicate published measurements of changes between mid-gestation to birth of mean LV end-diastolic volume (EDV) (1.1-8.3 mL) and dimensions (long-axis, 18-35 mm; short-axis, 9-18 mm) within 15% root mean squared deviation error. By decreasing volumetric load (-25%) at mid-gestation in the model, which emulates mitral stenosis in utero, a 65% reduction in LV EDV and a 46% reduction in LV wall volume were predicted at birth, similar to observations in HLHS patients. In retrospective blinded case studies for HLHS, using mid-gestation echocardiographic data, the model predicted a borderline and severe hypoplastic LV, consistent with the patients' late-gestation data in both cases. Notably, the model prediction was validated by testing for changes in LV shape in the model against clinical data for each HLHS case study. CONCLUSION: Reduced ventricular filling and altered shape may lead to reduced LV growth and a hypoplastic phenotype by reducing myocardial strains that serve as a myocyte growth stimulus. The human fetal growth model presented here may lead to a clinical tool that can help predict LV size and shape at birth based on mid-gestation LV echocardiographic measurements.

18.
Biomaterials ; 129: 98-110, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28334641

RESUMEN

Current assessment of biomaterial biocompatibility is typically implemented in wild type rodent models. Unfortunately, different characteristics of the immune systems in rodents versus humans limit the capability of these models to mimic the human immune response to naturally derived biomaterials. Here we investigated the utility of humanized mice as an improved model for testing naturally derived biomaterials. Two injectable hydrogels derived from decellularized porcine or human cadaveric myocardium were compared. Three days and one week after subcutaneous injection, the hydrogels were analyzed for early and mid-phase immune responses, respectively. Immune cells in the humanized mouse model, particularly T-helper cells, responded distinctly between the xenogeneic and allogeneic biomaterials. The allogeneic extracellular matrix derived hydrogels elicited significantly reduced total, human specific, and CD4+ T-helper cell infiltration in humanized mice compared to xenogeneic extracellular matrix hydrogels, which was not recapitulated in wild type mice. T-helper cells, in response to the allogeneic hydrogel material, were also less polarized towards a pro-remodeling Th2 phenotype compared to xenogeneic extracellular matrix hydrogels in humanized mice. In both models, both biomaterials induced the infiltration of macrophages polarized towards a M2 phenotype and T-helper cells polarized towards a Th2 phenotype. In conclusion, these studies showed the importance of testing naturally derived biomaterials in immune competent animals and the potential of utilizing this humanized mouse model for further studying human immune cell responses to biomaterials in an in vivo environment.


Asunto(s)
Aloinjertos/inmunología , Materiales Biocompatibles/farmacología , Xenoinjertos/inmunología , Inmunidad , Animales , Polaridad Celular/efectos de los fármacos , Matriz Extracelular/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacología , Inyecciones , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Modelos Animales , Sus scrofa , Linfocitos T Colaboradores-Inductores/efectos de los fármacos , Linfocitos T Colaboradores-Inductores/metabolismo
19.
Proteomics Clin Appl ; 10(1): 75-83, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26172914

RESUMEN

PURPOSE: The purpose of this study was to characterize and quantitatively analyze human cardiac extracellular matrix (ECM) isolated from six different cadaveric donor hearts. EXPERIMENTAL DESIGN: ECM was isolated by decellularization of six human cadaveric donor hearts and characterized by quantifying sulfated glycosaminoglycan content (sGAG) and via PAGE. The protein content was then quantified using ECM-targeted Quantitative conCATamers (QconCAT) by LC-SRM analysis using 83 stable isotope labeled (SIL) peptides representing 48 different proteins. Nontargeted global analysis was also implemented using LC-MS/MS. RESULTS: The sGAG content, PAGE, and QconCAT proteomics analysis showed significant variation between each of the six patient samples. The quantitative proteomics indicated that the majority of the protein content was composed of various fibrillar collagen components. Also, quantification of difficult to remove cellular proteins represented less than 1% of total protein content, which is very low for a decellularized biomaterial. Global proteomics identified over 200 distinct proteins present in the human cardiac ECM. CONCLUSION AND CLINICAL RELEVANCE: In conclusion, quantification and characterization of human myocardial ECM showed significant patient-to-patient variability between the six investigated patients. This is an important outcome for the development of allogeneic derived biomaterials and for increasing our understanding of human myocardial ECM composition.


Asunto(s)
Proteínas de la Matriz Extracelular/análisis , Matriz Extracelular/química , Miocardio/química , Proteómica/métodos , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Femenino , Humanos , Masculino , Miocardio/metabolismo
20.
Oman J Ophthalmol ; 8(1): 67-8, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25709282

RESUMEN

A 32-year old male hairdresser presented with redness and irritation of the left eye for past 15 days. A fragment of hair was found embedded in deep corneal stroma with minimal scarring. No evidence was found of previous or current inflammation incited by this foreign body. The position and depth of the hair fragment was documented by anterior segment optical coherence tomography (AS-OCT) and its effect on the corneal endothelium was assessed by specular microscopy. Hairdressers should take adequate precautions to prevent ocular injury although human hair appears to be well tolerated by the cornea.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA