Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Lipid Res ; 63(7): 100237, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35667416

RESUMEN

Angiopoietin-like 4 (ANGPTL4) is an important regulator of plasma triglyceride (TG) levels and an attractive pharmacological target for lowering plasma lipids and reducing cardiovascular risk. Here, we aimed to study the efficacy and safety of silencing ANGPTL4 in the livers of mice using hepatocyte-targeting GalNAc-conjugated antisense oligonucleotides (ASOs). Compared with injections with negative control ASO, four injections of two different doses of ANGPTL4 ASO over 2 weeks markedly downregulated ANGPTL4 levels in liver and adipose tissue, which was associated with significantly higher adipose LPL activity and lower plasma TGs in fed and fasted mice, as well as lower plasma glucose levels in fed mice. In separate experiments, injection of two different doses of ANGPTL4 ASO over 20 weeks of high-fat feeding reduced hepatic and adipose ANGPTL4 levels but did not trigger mesenteric lymphadenopathy, an acute phase response, chylous ascites, or any other pathological phenotypes. Compared with mice injected with negative control ASO, mice injected with ANGPTL4 ASO showed reduced food intake, reduced weight gain, and improved glucose tolerance. In addition, they exhibited lower plasma TGs, total cholesterol, LDL-C, glucose, serum amyloid A, and liver TG levels. By contrast, no significant difference in plasma alanine aminotransferase activity was observed. Overall, these data suggest that ASOs targeting ANGPTL4 effectively reduce plasma TG levels in mice without raising major safety concerns.


Asunto(s)
Glucosa , Linfadenopatía , Proteína 4 Similar a la Angiopoyetina/genética , Animales , Ratones , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/farmacología , Triglicéridos
2.
Lancet ; 393(10167): 133-142, 2019 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-30522919

RESUMEN

BACKGROUND: Primary prevention of cardiovascular disease often fails because of poor adherence among practitioners and individuals to prevention guidelines. We aimed to investigate whether ultrasound-based pictorial information about subclinical carotid atherosclerosis, targeting both primary care physicians and individuals, improves prevention. METHODS: Visualization of asymptomatic atherosclerotic disease for optimum cardiovascular prevention (VIPVIZA) is a pragmatic, open-label, randomised controlled trial that was integrated within the Västerbotten Intervention Programme, an ongoing population-based cardiovascular disease prevention programme in northern Sweden. Individuals aged 40, 50, or 60 years with one or more conventional risk factors were eligible to participate. Participants underwent clinical examination, blood sampling, and ultrasound assessment of carotid intima media wall thickness and plaque formation. Participants were randomly assigned 1:1 with a computer-generated randomisation list to an intervention group (pictorial representation of carotid ultrasound plus a nurse phone call to confirm understanding) or a control group (not informed). The primary outcomes, Framingham risk score (FRS) and European systematic coronary risk evaluation (SCORE), were assessed after 1 year among participants who were followed up. This study is registered with ClinicalTrials.gov, number NCT01849575. FINDINGS: 3532 individuals were enrolled between April 29, 2013, and June 7, 2016, of which 1783 were randomly assigned to the control group and 1749 were assigned to the intervention group. 3175 participants completed the 1-year follow-up. At the 1-year follow-up, FRS and SCORE differed significantly between groups (FRS 1·07 [95% CI 0·11 to 2·03, p=0·0017] and SCORE 0·16 [0·02 to 0·30, p=0·0010]). FRS decreased from baseline to the 1-year follow-up in the intervention group and increased in the control group (-0·58 [95% CI -0·86 to -0·30] vs 0·35 [0·08 to 0·63]). SCORE increased in both groups (0·13 [95% CI 0·09 to 0·18] vs 0·27 [0·23 to 0·30]). INTERPRETATION: This study provides evidence of the contributory role of pictorial presentation of silent atherosclerosis for prevention of cardiovascular disease. It supports further development of methods to reduce the major problem of low adherence to medication and lifestyle modification. FUNDING: Västerbotten County Council, the Swedish Research Council, the Heart and Lung Foundation, the Swedish Society of Medicine, and Carl Bennet Ltd, Sweden.


Asunto(s)
Enfermedades Cardiovasculares/prevención & control , Arterias Carótidas/diagnóstico por imagen , Prevención Primaria/métodos , Adulto , Aterosclerosis/diagnóstico por imagen , Grosor Intima-Media Carotídeo , Femenino , Estudios de Seguimiento , Conductas Relacionadas con la Salud , Promoción de la Salud/métodos , Humanos , Lípidos/sangre , Masculino , Persona de Mediana Edad , Medición de Riesgo/métodos
3.
Am J Physiol Renal Physiol ; 316(3): F558-F571, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30698048

RESUMEN

Activity of lipoprotein lipase (LPL) is high in mouse kidney, but the reason is poorly understood. The aim was to characterize localization, regulation, and function of LPL in kidney of C57BL/6J mice. We found LPL mainly in proximal tubules, localized inside the tubular epithelial cells, under all conditions studied. In fed mice, some LPL colocalized with the endothelial markers CD31 and GPIHBP1 and could be removed by perfusion with heparin, indicating a vascular location. The role of angiopoietin-like protein 4 (ANGPTL4) for nutritional modulation of LPL activity was studied in wild-type and Angptl4-/- mice. In Angptl4-/- mice, kidney LPL activity remained high in fasted animals, indicating that ANGPTL4 is involved in suppression of LPL activity on fasting, like in adipose tissue. The amount of ANGPTL4 protein in kidney was low, and the protein appeared smaller in size, compared with ANGPTL4 in heart and adipose tissue. To study the influence of obesity, mice were challenged with high-fat diet for 22 wk, and LPL was studied after an overnight fast compared with fasted mice given food for 3 h. High-fat diet caused blunting of the normal adaptation of LPL activity to feeding/fasting in adipose tissue, but in kidneys this adaptation was lost only in male mice. LPL activity increases to high levels in mouse kidney after feeding, but as no difference in uptake of chylomicron triglycerides in kidneys is found between fasted and fed states, our data confirm that LPL appears to have a minor role for lipid uptake in this organ.


Asunto(s)
Dieta Alta en Grasa , Riñón/metabolismo , Lipoproteína Lipasa/metabolismo , Obesidad/metabolismo , Tejido Adiposo/metabolismo , Proteína 4 Similar a la Angiopoyetina/genética , Proteína 4 Similar a la Angiopoyetina/metabolismo , Animales , Femenino , Masculino , Ratones , Ratones Noqueados , Estado Nutricional , Factores Sexuales
4.
Am J Physiol Renal Physiol ; 316(5): F914-F933, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30785350

RESUMEN

Balb/CJ mice are more sensitive to treatment with angiotensin II (ANG II) and high-salt diet compared with C57BL/6J mice. Together with higher mortality, they develop edema, signs of heart failure, and acute kidney injury. The aim of the present study was to identify differences in renal gene regulation that may affect kidney function and fluid balance, which could contribute to decompensation in Balb/CJ mice after ANG II + salt treatment. Male Balb/CJ and C57BL/6J mice were divided into the following five different treatment groups: control, ANG II, salt, ANG II + salt, and ANG II + salt + N-acetylcysteine. Gene expression microarrays were used to explore differential gene expression after treatment and between the strains. Published data from the Mouse Genome Database were used to identify the associated genomic differences. The glomerular filtration rate (GFR) was measured using inulin clearance, and fluid balance was measured using metabolic cages. Gene ontology enrichment analysis of gene expression microarrays identified glutathione transferase (antioxidant system) as highly enriched among differentially expressed genes. Balb/CJ mice had similar GFR compared with C57BL/6J mice but excreted less Na+ and water, although net fluid and electrolyte balance did not differ, suggesting that Balb/CJ mice may be inherently more prone to decompensation. Interestingly, C57BL/6J mice had higher urinary oxidative stress despite their relative protection from decompensation. In addition, treatment with the antioxidant N-acetylcysteine decreased oxidative stress in C57BL/6J mice, reduced urine excretion, and increased mortality. Balb/CJ mice are more sensitive than C57BL/6J to ANG II + salt, in part mediated by lower oxidative stress, which favors fluid and Na+ retention.


Asunto(s)
Angiotensina II , Tasa de Filtración Glomerular , Riñón/fisiopatología , Estrés Oxidativo , Cloruro de Sodio Dietético , Equilibrio Hidroelectrolítico , Desequilibrio Hidroelectrolítico/fisiopatología , Animales , Presión Sanguínea , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica , Tasa de Filtración Glomerular/genética , Riñón/metabolismo , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Embarazo , Factores Sexuales , Especificidad de la Especie , Equilibrio Hidroelectrolítico/genética , Desequilibrio Hidroelectrolítico/etiología , Desequilibrio Hidroelectrolítico/genética , Desequilibrio Hidroelectrolítico/metabolismo
5.
Am J Physiol Regul Integr Comp Physiol ; 316(5): R563-R570, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30840486

RESUMEN

The genetic background of a mouse strain determines its susceptibility to disease. C57BL/6J and Balb/CJ are two widely used inbred mouse strains that we found react dramatically differently to angiotensin II and high-salt diet (ANG II + Salt). Balb/CJ show increased mortality associated with anuria and edema formation while C57BL/6J develop arterial hypertension but do not decompensate and die. Clinical symptoms of heart failure in Balb/CJ mice gave the hypothesis that ANG II + Salt impairs cardiac function and induces cardiac remodeling in male Balb/CJ but not in male C57BL/6J mice. To test this hypothesis, we measured cardiac function using echocardiography before treatment and every day for 7 days during treatment with ANG II + Salt. Interestingly, pulsed wave Doppler of pulmonary artery flow indicated increased pulmonary vascular resistance and right ventricle systolic pressure in Balb/CJ mice, already 24 h after ANG II + Salt treatment was started. In addition, Balb/CJ mice showed abnormal diastolic filling indicated by reduced early and late filling and increased isovolumic relaxation time. Furthermore, Balb/CJ exhibited lower cardiac output compared with C57BL/6J even though they retained more sodium and water, as assessed using metabolic cages. Left posterior wall thickness increased during ANG II + Salt treatment but did not differ between the strains. In conclusion, ANG II + Salt treatment causes early restriction of pulmonary flow and reduced left ventricular filling and cardiac output in Balb/CJ, which results in fluid retention and peripheral edema. This makes Balb/CJ a potential model to study the adaptive capacity of the heart for identifying new disease mechanisms and drug targets.


Asunto(s)
Angiotensina II/metabolismo , Síndrome Cardiorrenal/fisiopatología , Dieta , Hipertensión/fisiopatología , Animales , Presión Sanguínea/fisiología , Síndrome Cardiorrenal/complicaciones , Insuficiencia Cardíaca/fisiopatología , Hipertensión/complicaciones , Hipertensión Pulmonar/complicaciones , Masculino , Ratones Endogámicos BALB C , Miocardio/metabolismo , Cloruro de Sodio Dietético/metabolismo , Cloruro de Sodio Dietético/farmacología , Factores de Tiempo , Desequilibrio Hidroelectrolítico/tratamiento farmacológico , Desequilibrio Hidroelectrolítico/metabolismo
6.
Proc Natl Acad Sci U S A ; 112(20): E2611-9, 2015 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-25941406

RESUMEN

Insulin resistance and ß-cell failure are the major defects in type 2 diabetes mellitus. However, the molecular mechanisms linking these two defects remain unknown. Elevated levels of apolipoprotein CIII (apoCIII) are associated not only with insulin resistance but also with cardiovascular disorders and inflammation. We now demonstrate that local apoCIII production is connected to pancreatic islet insulin resistance and ß-cell failure. An increase in islet apoCIII causes promotion of a local inflammatory milieu, increased mitochondrial metabolism, deranged regulation of ß-cell cytoplasmic free Ca(2+) concentration ([Ca(2+)]i) and apoptosis. Decreasing apoCIII in vivo results in improved glucose tolerance, and pancreatic apoCIII knockout islets transplanted into diabetic mice, with high systemic levels of the apolipoprotein, demonstrate a normal [Ca(2+)]i response pattern and no hallmarks of inflammation. Hence, under conditions of islet insulin resistance, locally produced apoCIII is an important diabetogenic factor involved in impairment of ß-cell function and may thus constitute a novel target for the treatment of type 2 diabetes mellitus.


Asunto(s)
Apolipoproteína C-III/metabolismo , Diabetes Mellitus Tipo 2/fisiopatología , Resistencia a la Insulina/fisiología , Células Secretoras de Insulina/patología , Análisis de Varianza , Animales , Apolipoproteína C-III/genética , Western Blotting , Calcio/metabolismo , Línea Celular Tumoral , Inmunohistoquímica , Ratones , Ratones Noqueados , Microscopía Confocal , Mitocondrias/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
7.
Am J Physiol Regul Integr Comp Physiol ; 310(11): R1045-52, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27009049

RESUMEN

Genetic factors confer risk for cardiovascular disease. Recently, large genome-wide population studies have shown associations between genomic loci close to LRIG3 and heart failure and plasma high-density lipoprotein (HDL) cholesterol level. Here, we ablated Lrig3 in mice and investigated the importance of Lrig3 for heart function and plasma lipid levels. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) was used to analyze Lrig3 expression in the hearts of wild-type and Lrig3-deficient mice. In addition, molecular, physiological, and functional parameters such as organ weights, heart rate, blood pressure, heart structure and function, gene expression in the heart, and plasma insulin, glucose, and lipid levels were evaluated. The Lrig3-deficient mice were smaller than the wild-type mice but otherwise appeared grossly normal. Lrig3 was expressed at detectable but relatively low levels in adult mouse hearts. At 9 mo of age, ad libitum-fed Lrig3-deficient mice had lower insulin levels than wild-type mice. At 12 mo of age, Lrig3-deficient mice exhibited increased blood pressure, and the Lrig3-deficient female mice displayed signs of cardiac hypertrophy as assessed by echocardiography, heart-to-body weight ratio, and expression of the cardiac hypertrophy marker gene Nppa. Additionally, Lrig3-deficient mice had reduced plasma HDL cholesterol and free glycerol. These findings in mice complement the human epidemiological results and suggest that Lrig3 may influence heart function and plasma lipid levels in mice and humans.


Asunto(s)
Presión Sanguínea , Cardiomegalia/fisiopatología , HDL-Colesterol/sangre , Frecuencia Cardíaca , Proteínas de la Membrana/metabolismo , Miocardio/patología , Animales , Regulación hacia Abajo , Femenino , Corazón , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
8.
Biochem Biophys Res Commun ; 450(2): 1063-9, 2014 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-24984153

RESUMEN

Patients at increased cardiovascular risk commonly display high levels of plasma triglycerides (TGs), elevated LDL cholesterol, small dense LDL particles and low levels of HDL-cholesterol. Many remain at high risk even after successful statin therapy, presumably because TG levels remain high. Lipoprotein lipase (LPL) maintains TG homeostasis in blood by hydrolysis of TG-rich lipoproteins. Efficient clearance of TGs is accompanied by increased levels of HDL-cholesterol and decreased levels of small dense LDL. Given the central role of LPL in lipid metabolism we sought to find small molecules that could increase LPL activity and serve as starting points for drug development efforts against cardiovascular disease. Using a small molecule screening approach we have identified small molecules that can protect LPL from inactivation by the controller protein angiopoietin-like protein 4 during incubations in vitro. One of the selected compounds, 50F10, was directly shown to preserve the active homodimer structure of LPL, as demonstrated by heparin-Sepharose chromatography. On injection to hypertriglyceridemic apolipoprotein A-V deficient mice the compound ameliorated the postprandial response after an olive oil gavage. This is a potential lead compound for the development of drugs that could reduce the residual risk associated with elevated plasma TGs in dyslipidemia.


Asunto(s)
Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Hipolipemiantes/farmacología , Lipoproteína Lipasa/metabolismo , Triglicéridos/sangre , Proteína 4 Similar a la Angiopoyetina , Angiopoyetinas/metabolismo , Animales , Apolipoproteína A-V , Apolipoproteínas/genética , Estabilidad de Enzimas , Compuestos Heterocíclicos de 4 o más Anillos/química , Hipertrigliceridemia/sangre , Hipertrigliceridemia/tratamiento farmacológico , Lipoproteína Lipasa/química , Ratones Endogámicos C57BL , Ratones Noqueados , Periodo Posprandial , Unión Proteica , Multimerización de Proteína , Piridinas/química , Piridinas/farmacología , Bibliotecas de Moléculas Pequeñas , Relación Estructura-Actividad
9.
Eur Heart J Open ; 4(3): oeae035, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38895109

RESUMEN

Aims: APOC3, ANGPTL3, and ANGPTL4 are circulating proteins that are actively pursued as pharmacological targets to treat dyslipidaemia and reduce the risk of atherosclerotic cardiovascular disease. Here, we used human genetic data to compare the predicted therapeutic and adverse effects of APOC3, ANGPTL3, and ANGPTL4 inactivation. Methods and results: We conducted drug-target Mendelian randomization analyses using variants in proximity to the genes associated with circulating protein levels to compare APOC3, ANGPTL3, and ANGPTL4 as drug targets. We obtained exposure and outcome data from large-scale genome-wide association studies and used generalized least squares to correct for linkage disequilibrium-related correlation. We evaluated five primary cardiometabolic endpoints and screened for potential side effects across 694 disease-related endpoints, 43 clinical laboratory tests, and 11 internal organ MRI measurements. Genetically lowering circulating ANGPTL4 levels reduced the odds of coronary artery disease (CAD) [odds ratio, 0.57 per s.d. protein (95% CI 0.47-0.70)] and Type 2 diabetes (T2D) [odds ratio, 0.73 per s.d. protein (95% CI 0.57-0.94)]. Genetically lowering circulating APOC3 levels also reduced the odds of CAD [odds ratio, 0.90 per s.d. protein (95% CI 0.82-0.99)]. Genetically lowered ANGPTL3 levels via common variants were not associated with CAD. However, meta-analysis of protein-truncating variants revealed that ANGPTL3 inactivation protected against CAD (odds ratio, 0.71 per allele [95%CI, 0.58-0.85]). Analysis of lowered ANGPTL3, ANGPTL4, and APOC3 levels did not identify important safety concerns. Conclusion: Human genetic evidence suggests that therapies aimed at reducing circulating levels of ANGPTL3, ANGPTL4, and APOC3 reduce the risk of CAD. ANGPTL4 lowering may also reduce the risk of T2D.

10.
J Lipid Res ; 54(3): 649-661, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23307945

RESUMEN

During the diagnosis of three unrelated patients with severe hypertriglyceridemia, three APOA5 mutations [p.(Ser232_Leu235)del, p.Leu253Pro, and p.Asp332ValfsX4] were found without evidence of concomitant LPL, APOC2, or GPIHBP1 mutations. The molecular mechanisms by which APOA5 mutations result in severe hypertriglyceridemia remain poorly understood, and the functional impairment/s induced by these specific mutations was not obvious. Therefore, we performed a thorough structural and functional analysis that included follow-up of patients and their closest relatives, measurement of apoA-V serum concentrations, and sequencing of the APOA5 gene in 200 nonhyperlipidemic controls. Further, we cloned, overexpressed, and purified both wild-type and mutant apoA-V variants and characterized their capacity to activate LPL. The interactions of recombinant wild-type and mutated apoA-V variants with liposomes of different composition, heparin, LRP1, sortilin, and SorLA/LR11 were also analyzed. Finally, to explore the possible structural consequences of these mutations, we developed a three-dimensional model of full-length, lipid-free human apoA-V. A complex, wide array of impairments was found in each of the three mutants, suggesting that the specific residues affected are critical structural determinants for apoA-V function in lipoprotein metabolism and, therefore, that these APOA5 mutations are a direct cause of hypertriglyceridemia.


Asunto(s)
Apolipoproteínas A/química , Apolipoproteínas A/metabolismo , Hipertrigliceridemia/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Apolipoproteína A-V , Apolipoproteínas A/genética , Western Blotting , Electroforesis en Gel de Poliacrilamida , Femenino , Humanos , Liposomas/química , Liposomas/metabolismo , Masculino , Persona de Mediana Edad , Mutagénesis Sitio-Dirigida , Mutación , Adulto Joven
11.
Biochim Biophys Acta ; 1821(10): 1370-8, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22732211

RESUMEN

Lipoprotein lipase (LPL) is important for clearance of triacylglycerols (TG) from plasma both as an enzyme and as a bridging factor between lipoproteins and receptors for endocytosis. The amount of LPL at the luminal side of the capillary endothelium determines to what extent lipids are taken up. Mechanisms to control both the activity of LPL and its transport to the endothelial sites are regulated, but poorly understood. Angiopoietin-like proteins (ANGPTLs) 3 and 4 are potential control proteins for LPL, but plasma concentrations of ANGPTLs do not correlate with plasma TG levels. We investigated the effects of recombinant human N-terminal (NT) ANGPTLs3 and 4 on LPL-mediated bridging of TG-rich lipoproteins to primary mouse hepatocytes and found that the NT-ANGPTLs, in concentrations sufficient to cause inactivation of LPL in vitro, were unable to prevent LPL-mediated lipoprotein uptake. We therefore investigated the effects of lipoproteins (chylomicrons, VLDL and LDL) on the inactivation of LPL in vitro by NT-ANGPTLs3 and 4 and found that LPL activity was protected by TG-rich lipoproteins. In vivo, postprandial TG protected LPL from inactivation by recombinant NT-ANGPTL4 injected to mice. We conclude that lipoprotein-bound LPL is stabilized against inactivation by ANGPTLs. The levels of ANGPTLs found in blood may not be sufficient to overcome this stabilization. Therefore it is likely that the prime site of action of ANGPTLs on LPL is in subendothelial compartments where TG-rich lipoprotein concentration is lower than in blood. This could explain why the plasma levels of TG and ANGPTLs do not correlate.


Asunto(s)
Angiopoyetinas/farmacología , Lipoproteína Lipasa/metabolismo , Lipoproteínas/fisiología , Triglicéridos/fisiología , Proteína 3 Similar a la Angiopoyetina , Proteína 4 Similar a la Angiopoyetina , Proteínas Similares a la Angiopoyetina , Animales , Quilomicrones/fisiología , Activación Enzimática , Hepatocitos/metabolismo , Humanos , Lipoproteínas LDL/fisiología , Lipoproteínas VLDL/fisiología , Ratones
12.
J Cell Sci ; 124(Pt 7): 1095-105, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21385844

RESUMEN

Many different tissues and cell types exhibit regulated secretion of lipoprotein lipase (LPL). However, the sorting of LPL in the trans Golgi network has not, hitherto, been understood in detail. Here, we characterize the role of SorLA (officially known as SorLA-1 or sortilin-related receptor) in the intracellular trafficking of LPL. We found that LPL bound to SorLA under neutral and acidic conditions, and in cells this binding mainly occurred in vesicular structures. SorLA expression changed the subcellular distribution of LPL so it became more concentrated in endosomes. From the endosomes, LPL was further routed to the lysosomes, which resulted in a degradation of newly synthesized LPL. Consequently, an 80% reduction of LPL activity was observed in cells that expressed SorLA. By analogy, SorLA regulated the vesicle-like localization of LPL in primary neuronal cells. Thus, LPL binds to SorLA in the biosynthetic pathway and is subsequently transported to endosomes. As a result of this SorLA mediated-transport, newly synthesized LPL can be routed into specialized vesicles and eventually sent to degradation, and its activity thereby regulated.


Asunto(s)
Espacio Intracelular/metabolismo , Proteínas Relacionadas con Receptor de LDL/metabolismo , Lipoproteína Lipasa/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Animales , Bovinos , Línea Celular , Cricetinae , Humanos , Espacio Intracelular/química , Espacio Intracelular/enzimología , Espacio Intracelular/genética , Proteínas Relacionadas con Receptor de LDL/genética , Lipoproteína Lipasa/química , Lipoproteína Lipasa/genética , Proteínas de Transporte de Membrana/genética , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas
13.
BMC Physiol ; 12: 13, 2012 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-23176178

RESUMEN

BACKGROUND: Lipoprotein lipase (LPL) hydrolyzes triglycerides in lipoproteins and makes fatty acids available for tissue metabolism. The activity of the enzyme is modulated in a tissue specific manner by interaction with other proteins. We have studied how feeding/fasting and some related perturbations affect the expression, in rat adipose tissue, of three such proteins, LMF1, an ER protein necessary for folding of LPL into its active dimeric form, the endogenous LPL inhibitor ANGPTL4, and GPIHBP1, that transfers LPL across the endothelium. RESULTS: The system underwent moderate circadian oscillations, for LPL in phase with food intake, for ANGPTL4 and GPIHBP1 in the opposite direction. Studies with cycloheximide showed that whereas LPL protein turns over rapidly, ANGPTL4 protein turns over more slowly. Studies with the transcription blocker Actinomycin D showed that transcripts for ANGPTL4 and GPIHBP1, but not LMF1 or LPL, turn over rapidly. When food was withdrawn the expression of ANGPTL4 and GPIHBP1 increased rapidly, and LPL activity decreased. On re-feeding and after injection of insulin the expression of ANGPTL4 and GPIHBP1 decreased rapidly, and LPL activity increased. In ANGPTL4(-/-) mice adipose tissue LPL activity did not show these responses. In old, obese rats that showed signs of insulin resistance, the responses of ANGPTL4 and GPIHBP1 mRNA and of LPL activity were severely blunted (at 26 weeks of age) or almost abolished (at 52 weeks of age). CONCLUSIONS: This study demonstrates directly that ANGPTL4 is necessary for rapid modulation of LPL activity in adipose tissue. ANGPTL4 message levels responded very rapidly to changes in the nutritional state. LPL activity always changed in the opposite direction. This did not happen in Angptl4(-/-) mice. GPIHBP1 message levels also changed rapidly and in the same direction as ANGPTL4, i.e. increased on fasting when LPL activity decreased. This was unexpected because GPIHBP1 is known to stabilize LPL. The plasticity of the LPL system is severely blunted or completely lost in insulin resistant rats.


Asunto(s)
Tejido Adiposo/enzimología , Angiopoyetinas/fisiología , Regulación del Apetito/fisiología , Lipoproteína Lipasa/metabolismo , Proteínas de la Membrana/fisiología , Receptores de Lipoproteína/fisiología , Proteína 4 Similar a la Angiopoyetina , Angiopoyetinas/deficiencia , Animales , Ritmo Circadiano/fisiología , Activación Enzimática/fisiología , Resistencia a la Insulina/genética , Resistencia a la Insulina/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratas , Ratas Sprague-Dawley
14.
Front Physiol ; 13: 859671, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35422714

RESUMEN

Cold-induced activation of brown adipose tissue (BAT) has an important impact on systemic lipoprotein metabolism by accelerating the processing of circulating triglyceride-rich lipoproteins (TRL). Lipoprotein lipase (LPL) expressed by adipocytes is translocated via endothelial to the capillary lumen, where LPL acts as the central enzyme for the vascular lipoprotein processing. Based on preliminary data showing that LPL is not only expressed in adipocytes but also in endothelial cells of cold-activated BAT, we aimed to dissect the relevance of endothelial versus adipocyte LPL for lipid and energy metabolism in the context of adaptive thermogenesis. By metabolic studies we found that cold-induced triglyceride uptake into BAT, lipoprotein disposal, glucose uptake and adaptive thermogenesis were not impaired in mice lacking Lpl exclusively in endothelial cells. This finding may be explained by a compensatory upregulation in the expression of adipocyte-derived Lpl and endothelial lipase (Lipg).

15.
Sci Adv ; 7(11)2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33712458

RESUMEN

Increased levels of apolipoprotein CIII (apoCIII), a key regulator of lipid metabolism, result in obesity-related metabolic derangements. We investigated mechanistically whether lowering or preventing high-fat diet (HFD)-induced increase in apoCIII protects against the detrimental metabolic consequences. Mice, first fed HFD for 10 weeks and thereafter also given an antisense (ASO) to lower apoCIII, already showed reduced levels of apoCIII and metabolic improvements after 4 weeks, despite maintained obesity. Prolonged ASO treatment reversed the metabolic phenotype due to increased lipase activity and receptor-mediated hepatic uptake of lipids. Fatty acids were transferred to the ketogenic pathway, and ketones were used in brown adipose tissue (BAT). This resulted in no fat accumulation and preserved morphology and function of liver and BAT. If ASO treatment started simultaneously with the HFD, mice remained lean and metabolically healthy. Thus, lowering apoCIII protects against and reverses the HFD-induced metabolic phenotype by promoting physiological insulin sensitivity.


Asunto(s)
Dieta Alta en Grasa , Enfermedades Metabólicas , Tejido Adiposo Pardo/metabolismo , Animales , Apolipoproteína C-III/metabolismo , Dieta Alta en Grasa/efectos adversos , Enfermedades Metabólicas/metabolismo , Ratones , Ratones Endogámicos C57BL , Obesidad/etiología , Obesidad/metabolismo , Obesidad/prevención & control
16.
Cell Metab ; 33(3): 547-564.e7, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33357458

RESUMEN

In response to cold exposure, thermogenic adipocytes internalize large amounts of fatty acids after lipoprotein lipase-mediated hydrolysis of triglyceride-rich lipoproteins (TRL) in the capillary lumen of brown adipose tissue (BAT) and white adipose tissue (WAT). Here, we show that in cold-exposed mice, vascular endothelial cells in adipose tissues endocytose substantial amounts of entire TRL particles. These lipoproteins subsequently follow the endosomal-lysosomal pathway, where they undergo lysosomal acid lipase (LAL)-mediated processing. Endothelial cell-specific LAL deficiency results in impaired thermogenic capacity as a consequence of reduced recruitment of brown and brite/beige adipocytes. Mechanistically, TRL processing by LAL induces proliferation of endothelial cells and adipocyte precursors via beta-oxidation-dependent production of reactive oxygen species, which in turn stimulates hypoxia-inducible factor-1α-dependent proliferative responses. In conclusion, this study demonstrates a physiological role for TRL particle uptake into BAT and WAT and establishes endothelial lipoprotein processing as an important determinant of adipose tissue remodeling during thermogenic adaptation.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Lipoproteínas/metabolismo , Lisosomas/metabolismo , Termogénesis , Triglicéridos/metabolismo , Adiponectina/genética , Adiponectina/metabolismo , Tejido Adiposo Pardo/patología , Tejido Adiposo Blanco/patología , Animales , Antígenos CD36/metabolismo , Diferenciación Celular , Proliferación Celular , Frío , Células Endoteliales/citología , Células Endoteliales/metabolismo , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Lipoproteínas/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Especies Reactivas de Oxígeno/metabolismo , Receptores de Lipoproteína/genética , Receptores de Lipoproteína/metabolismo , Esterol Esterasa/deficiencia , Esterol Esterasa/genética , Esterol Esterasa/metabolismo , Triglicéridos/genética
17.
Cell Metab ; 28(4): 644-655.e4, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30033199

RESUMEN

The coordination of the organ-specific responses regulating systemic energy distribution to replenish lipid stores in acutely activated brown adipose tissue (BAT) remains elusive. Here, we show that short-term cold exposure or acute ß3-adrenergic receptor (ß3AR) stimulation results in secretion of the anabolic hormone insulin. This process is diminished in adipocyte-specific Atgl-/- mice, indicating that lipolysis in white adipose tissue (WAT) promotes insulin secretion. Inhibition of pancreatic ß cells abolished uptake of lipids delivered by triglyceride-rich lipoproteins into activated BAT. Both increased lipid uptake into BAT and whole-body energy expenditure in response to ß3AR stimulation were blunted in mice treated with the insulin receptor antagonist S961 or lacking the insulin receptor in brown adipocytes. In conclusion, we introduce the concept that acute cold and ß3AR stimulation trigger a systemic response involving WAT, ß cells, and BAT, which is essential for insulin-dependent fuel uptake and adaptive thermogenesis.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Frío , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Lipólisis/fisiología , Receptores Adrenérgicos beta 3/metabolismo , Adipocitos Marrones/metabolismo , Agonistas de Receptores Adrenérgicos beta 3/farmacología , Animales , Dieta Alta en Grasa , Dioxoles/farmacología , Metabolismo Energético/fisiología , Lipasa/metabolismo , Lipoproteínas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Péptidos/farmacología , Receptor de Insulina/antagonistas & inhibidores , Termogénesis/fisiología , Triglicéridos/metabolismo
18.
Nat Commun ; 8: 15010, 2017 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-28422089

RESUMEN

Brown and beige adipocytes combust nutrients for thermogenesis and through their metabolic activity decrease pro-atherogenic remnant lipoproteins in hyperlipidemic mice. However, whether the activation of thermogenic adipocytes affects the metabolism and anti-atherogenic properties of high-density lipoproteins (HDL) is unknown. Here, we report a reduction in atherosclerosis in response to pharmacological stimulation of thermogenesis linked to increased HDL levels in APOE*3-Leiden.CETP mice. Both cold-induced and pharmacological thermogenic activation enhances HDL remodelling, which is associated with specific lipidomic changes in mouse and human HDL. Furthermore, thermogenic stimulation promotes HDL-cholesterol clearance and increases macrophage-to-faeces reverse cholesterol transport in mice. Mechanistically, we show that intravascular lipolysis by adipocyte lipoprotein lipase and hepatic uptake of HDL by scavenger receptor B-I are the driving forces of HDL-cholesterol disposal in liver. Our findings corroborate the notion that high metabolic activity of thermogenic adipocytes confers atheroprotective properties via increased systemic cholesterol flux through the HDL compartment.


Asunto(s)
Adipocitos/metabolismo , Colesterol/metabolismo , Lipoproteínas HDL/metabolismo , Termogénesis , Animales , Transporte Biológico , Antígenos CD36/metabolismo , Cardiotónicos/farmacología , Cardiotónicos/uso terapéutico , HDL-Colesterol/sangre , HDL-Colesterol/metabolismo , Frío , Humanos , Hiperlipidemias/tratamiento farmacológico , Hiperlipidemias/patología , Lipólisis , Lipoproteína Lipasa/metabolismo , Hígado/metabolismo , Masculino , Metaboloma , Ratones Endogámicos C57BL , Triglicéridos/metabolismo
19.
Cell Metab ; 23(3): 441-53, 2016 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-26853749

RESUMEN

FGF21 decreases plasma triglycerides (TGs) in rodents and humans; however, the underlying mechanism or mechanisms are unclear. In the present study, we examined the role of FGF21 in production and disposal of TG-rich lipoproteins (TRLs) in mice. Treatment with pharmacological doses of FGF21 acutely reduced plasma non-esterified fatty acids (NEFAs), liver TG content, and VLDL-TG secretion. In addition, metabolic turnover studies revealed that FGF21 facilitated the catabolism of TRL in white adipose tissue (WAT) and brown adipose tissue (BAT). FGF21-dependent TRL processing was strongly attenuated in CD36-deficient mice and transgenic mice lacking lipoprotein lipase in adipose tissues. Insulin resistance in diet-induced obese and ob/ob mice shifted FGF21 responses from WAT toward energy-combusting BAT. In conclusion, FGF21 lowers plasma TGs through a dual mechanism: first, by reducing NEFA plasma levels and consequently hepatic VLDL lipidation and, second, by increasing CD36 and LPL-dependent TRL disposal in WAT and BAT.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Factores de Crecimiento de Fibroblastos/farmacología , Hipolipemiantes/farmacología , Lipoproteínas VLDL/metabolismo , Triglicéridos/sangre , Adipocitos Blancos/efectos de los fármacos , Adipocitos Blancos/metabolismo , Tejido Adiposo Pardo/efectos de los fármacos , Tejido Adiposo Blanco/efectos de los fármacos , Animales , Células Cultivadas , Evaluación Preclínica de Medicamentos , Femenino , Factores de Crecimiento de Fibroblastos/uso terapéutico , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Hipolipemiantes/uso terapéutico , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados
20.
Nutr Metab (Lond) ; 13: 79, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27891164

RESUMEN

BACKGROUND: Excess body fat is a major health issue and a risk factor for the development of numerous chronic diseases. Low-carbohydrate diets like the Atkins Diet are popular for rapid weight loss, but the long-term consequences remain the subject of debate. The Scandinavian low-carbohydrate high-fat (LCHF) diet, which has been popular in Scandinavian countries for about a decade, has very low carbohydrate content (~5 E %) but is rich in fat and includes a high proportion of saturated fatty acids. Here we investigated the metabolic and physiological consequences of a diet with a macronutrient composition similar to the Scandinavian LCHF diet and its effects on the organs, tissues, and metabolism of weight stable mice. METHODS: Female C57BL/6J mice were iso-energetically pair-fed for 4 weeks with standard chow or a LCHF diet. We measured body composition using echo MRI and the aerobic capacity before and after 2 and 4 weeks on diet. Cardiac function was assessed by echocardiography before and after 4 weeks on diet. The metabolic rate was measured by indirect calorimetry the fourth week of the diet. Mice were sacrificed after 4 weeks and the organ weight, triglyceride levels, and blood chemistry were analyzed, and the expression of key ketogenic, metabolic, hormonal, and inflammation genes were measured in the heart, liver, and adipose tissue depots of the mice using real-time PCR. RESULTS: The increase in body weight of mice fed a LCHF diet was similar to that in controls. However, while control mice maintained their body composition throughout the study, LCHF mice gained fat mass at the expense of lean mass after 2 weeks. The LCHF diet increased cardiac triglyceride content, impaired cardiac function, and reduced aerobic capacity. It also induced pronounced alterations in gene expression and substrate metabolism, indicating a unique metabolic state. CONCLUSIONS: Pair-fed mice eating LCHF increased their percentage of body fat at the expense of lean mass already after 2 weeks, and after 4 weeks the function of the heart deteriorated. These findings highlight the urgent need to investigate the effects of a LCHF diet on health parameters in humans.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA