Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 300(7): 107460, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38876306

RESUMEN

Obesity is a major risk factor for liver and cardiovascular diseases. However, obesity-driven mechanisms that contribute to the pathogenesis of multiple organ diseases are still obscure and treatment is inadequate. We hypothesized that increased , glucose-6-phosphate dehydrogenase (G6PD), the key rate-limiting enzyme in the pentose shunt, is critical in evoking metabolic reprogramming in multiple organs and is a significant contributor to the pathogenesis of liver and cardiovascular diseases. G6PD is induced by a carbohydrate-rich diet and insulin. Long-term (8 months) high-fat diet (HFD) feeding increased body weight and elicited metabolic reprogramming in visceral fat, liver, and aorta, of the wild-type rats. In addition, HFD increased inflammatory chemokines in visceral fat. Interestingly, CRISPR-edited loss-of-function Mediterranean G6PD variant (G6PDS188F) rats, which mimic human polymorphism, moderated HFD-induced weight gain and metabolic reprogramming in visceral fat, liver, and aorta. The G6PDS188F variant prevented HFD-induced CCL7 and adipocyte hypertrophy. Furthermore, the G6PDS188F variant increased Magel2 - a gene encoding circadian clock-related protein that suppresses obesity associated with Prader-Willi syndrome - and reduced HFD-induced non-alcoholic fatty liver. Additionally, the G6PDS188F variant reduced aging-induced aortic stiffening. Our findings suggest G6PD is a regulator of HFD-induced obesity, adipocyte hypertrophy, and fatty liver.


Asunto(s)
Adipocitos , Dieta Alta en Grasa , Hígado Graso , Glucosafosfato Deshidrogenasa , Hipertrofia , Obesidad , Animales , Glucosafosfato Deshidrogenasa/metabolismo , Glucosafosfato Deshidrogenasa/genética , Masculino , Ratas , Obesidad/metabolismo , Obesidad/genética , Obesidad/patología , Obesidad/etiología , Dieta Alta en Grasa/efectos adversos , Adipocitos/metabolismo , Adipocitos/patología , Hígado Graso/metabolismo , Hígado Graso/genética , Hígado Graso/patología , Hígado/metabolismo , Hígado/patología , Ratas Sprague-Dawley , Grasa Intraabdominal/metabolismo , Grasa Intraabdominal/patología
2.
J Cell Sci ; 134(12)2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34152388

RESUMEN

Cell cycle control is a key aspect of numerous physiological and pathological processes. The contribution of biophysical cues, such as stiffness or elasticity of the underlying extracellular matrix (ECM), is critically important in regulating cell cycle progression and proliferation. Indeed, increased ECM stiffness causes aberrant cell cycle progression and proliferation. However, the molecular mechanisms that control these stiffness-mediated cellular responses remain unclear. Here, we address this gap and show good evidence that lamellipodin (symbol RAPH1), previously known as a critical regulator of cell migration, stimulates ECM stiffness-mediated cyclin expression and intracellular stiffening in mouse embryonic fibroblasts. We observed that increased ECM stiffness upregulates lamellipodin expression. This is mediated by an integrin-dependent FAK-Cas-Rac signaling module and supports stiffness-mediated lamellipodin induction. Mechanistically, we find that lamellipodin overexpression increased, and lamellipodin knockdown reduced, stiffness-induced cell cyclin expression and cell proliferation, and intracellular stiffness. Overall, these results suggest that lamellipodin levels may be critical for regulating cell proliferation. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Ciclinas , Fibroblastos , Animales , Puntos de Control del Ciclo Celular , Proliferación Celular , Matriz Extracelular , Ratones , Transducción de Señal
3.
EBioMedicine ; 103: 105093, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38569318

RESUMEN

BACKGROUND: Human restricted genes contribute to human specific traits in the immune system. CHRFAM7A, a uniquely human fusion gene, is a negative regulator of the α7 nicotinic acetylcholine receptor (α7 nAChR), the highest Ca2+ conductor of the ACh receptors implicated in innate immunity. Understanding the mechanism of how CHRFAM7A affects the immune system remains unexplored. METHODS: Two model systems are used, human induced pluripotent stem cells (iPSC) and human primary monocytes, to characterize α7 nAChR function, Ca2+ dynamics and decoders to elucidate the pathway from receptor to phenotype. FINDINGS: CHRFAM7A/α7 nAChR is identified as a hypomorphic receptor with mitigated Ca2+ influx and prolonged channel closed state. This shifts the Ca2+ reservoir from the extracellular space to the endoplasmic reticulum (ER) leading to Ca2+ dynamic changes. Ca2+ decoder small GTPase Rac1 is then activated, reorganizing the actin cytoskeleton. Observed actin mediated phenotypes include cellular adhesion, motility, phagocytosis and tissue mechanosensation. INTERPRETATION: CHRFAM7A introduces an additional, human specific, layer to Ca2+ regulation leading to an innate immune gain of function. Through the actin cytoskeleton it drives adaptation to the mechanical properties of the tissue environment leading to an ability to invade previously immune restricted niches. Human genetic diversity predicts profound translational significance as its understanding builds the foundation for successful treatments for infectious diseases, sepsis, and cancer metastasis. FUNDING: This work is supported in part by the Community Foundation for Greater Buffalo (Kinga Szigeti) and in part by NIH grant R01HL163168 (Yongho Bae).


Asunto(s)
Citoesqueleto de Actina , Señalización del Calcio , Células Madre Pluripotentes Inducidas , Receptor Nicotínico de Acetilcolina alfa 7 , Humanos , Citoesqueleto de Actina/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/genética , Calcio/metabolismo , Inmunidad Innata , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Monocitos/metabolismo , Fagocitosis , Proteína de Unión al GTP rac1/metabolismo , Proteína de Unión al GTP rac1/genética
4.
EBioMedicine ; 95: 104725, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37517100

RESUMEN

BACKGROUND: While advancements in imaging techniques have led to major strides in deciphering the human brain, successful interventions are elusive and represent some of the most persistent translational gaps in medicine. Human restricted CHRFAM7A has been associated with neuropsychiatric disorders. METHODS: The physiological role of CHRFAM7A in human brain is explored using multiomics approach on 600 post mortem human brain tissue samples. The emerging pathways and mechanistic hypotheses are tested and validated in an isogenic hiPSC model of CHRFAM7A knock-in medial ganglionic eminence progenitors and neurons. FINDINGS: CHRFAM7A is identified as a modulator of intracellular calcium dynamics and an upstream regulator of Rac1. Rac1 activation re-designs the actin cytoskeleton leading to dynamic actin driven remodeling of membrane protrusion and a switch from filopodia to lamellipodia. The reinforced cytoskeleton leads to an advantage to tolerate stiffer mechanical properties of the extracellular environment. INTERPRETATION: CHRFAM7A modifies the actin cytoskeleton to a more dynamic and stiffness resistant state in an α7nAChR dependent manner. CHRFAM7A may facilitate neuronal adaptation to changes in the brain environment in physiological and pathological conditions contributing to risk or recovery. Understanding how CHRFAM7A affects human brain requires human studies in the areas of memory formation and erasure, cognitive reserve, and neuronal plasticity. FUNDING: This work is supported in part by the Community Foundation for Greater Buffalo (Kinga Szigeti). Also, in part by the International Society for Neurochemistry (ISN) and The Company of Biologists (Nicolas Rosas). ROSMAP is supported by NIA grants P30AG10161, P30AG72975, R01AG15819, R01AG17917. U01AG46152, and U01AG61356.


Asunto(s)
Encéfalo , Mutación con Ganancia de Función , Humanos , Encéfalo/metabolismo , Neuronas/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo
5.
APL Bioeng ; 7(4): 046104, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37868708

RESUMEN

Vascular dysfunction is a common cause of cardiovascular diseases characterized by the narrowing and stiffening of arteries, such as atherosclerosis, restenosis, and hypertension. Arterial narrowing results from the aberrant proliferation of vascular smooth muscle cells (VSMCs) and their increased synthesis and deposition of extracellular matrix (ECM) proteins. These, in turn, are modulated by arterial stiffness, but the mechanism for this is not fully understood. We found that survivin is an important regulator of stiffness-mediated ECM synthesis and intracellular stiffness in VSMCs. Whole-transcriptome analysis and cell culture experiments showed that survivin expression is upregulated in injured femoral arteries in mice and in human VSMCs cultured on stiff fibronectin-coated hydrogels. Suppressed expression of survivin in human VSMCs significantly decreased the stiffness-mediated expression of ECM components related to arterial stiffening, such as collagen-I, fibronectin, and lysyl oxidase. By contrast, expression of these ECM proteins was rescued by ectopic expression of survivin in human VSMCs cultured on soft hydrogels. Interestingly, atomic force microscopy analysis showed that suppressed or ectopic expression of survivin decreases or increases intracellular stiffness, respectively. Furthermore, we observed that inhibiting Rac and Rho reduces survivin expression, elucidating a mechanical pathway connecting intracellular tension, mediated by Rac and Rho, to survivin induction. Finally, we found that survivin inhibition decreases FAK phosphorylation, indicating that survivin-dependent intracellular tension feeds back to maintain signaling through FAK. These findings suggest a novel mechanism by which survivin potentially modulates arterial stiffness.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA