Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
BMC Plant Biol ; 23(1): 492, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37833649

RESUMEN

BACKGROUND: Orchids (Cymbidium spp.) exhibit significant variations in floral morphology, pollinator relations, and ecological habitats. Due to their exceptional economic and ornamental value, Cymbidium spp. have been commercially cultivated for centuries. SSR markers are extensively used genetic tools for biology identification and population genetics analysis. RESULT: In this study, nine polymorphic EST-SSR loci were isolated from Cymbidium goeringii using RNA-Seq technology. All nine SSR loci showed transferability in seven other congeneric species, including 51 cultivars. The novel SSR markers detected inter-species gene flow among the Cymbidium species and intra-species sub-division of C. goeringii and C. ensifolium, as revealed by neighborhood-joining and Structure clustering analyses. CONCLUSION: In this study, we developed nine microsatellites using RNA-Seq technology. These SSR markers aided in detecting potential gene flow among Cymbidium species and identified the intra-species sub-division of C. goeringii and C. ensifolium.


Asunto(s)
Genética de Población , Orchidaceae , Hibridación Genética , Hibridación de Ácido Nucleico , Orchidaceae/genética , Repeticiones de Microsatélite/genética
2.
Mol Biol Rep ; 50(11): 9107-9119, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37749345

RESUMEN

BACKGROUND: Chimonanthus praecox and Chimonanthus salicifolius are closely related species that diverged approximately six million years ago. While both C. praecox and C. salicifolius could withstand brief periods of low temperatures of - 15 °C. Their flowering times are different, C. praecox blooms in early spring, whereas C. salicifolius blooms in autumn. The SBP-box (SQUAMOSA promoter-binding protein) is a plant-specific gene family that plays a crucial vital role in regulating plant flowering. Although extensively studied in various plants, the SBP gene family remains uncharacterized in Calycanthaceae. METHODS AND RESULTS: We conducted genome-wide identification of SBP genes in both C. praecox and C. salicifolius and comprehensively characterized the chromosomal localization, gene structure, conserved motifs, and domains of the identified SBP genes. In total, 15 and 18 SBP genes were identified in C. praecox and C. salicifolius, respectively. According to phylogenetic analysis, the SBP genes from Arabidopsis, C. praecox, and C. salicifolius were clustered into eight groups. Analysis of the gene structure and conserved protein motifs showed that SBP proteins of the same subfamily have similar motif structures. The expression patterns of SBP genes were analyzed using transcriptome data. The results revealed that more than half of the genes exhibited lower expression levels in leaves than in flowers, suggesting their potential involvement in the flower development process and may be linked to the winter and autumn flowering of C. praecox and C. salicifolius. CONCLUSION: Thirty-three SBPs were identified in C. praecox and C. salicifolius. The evolutionary characteristics and expression patterns were examined in this study. These results provide valuable information to elucidate the evolutionary relationships of the SBP family and help determine the functional characteristics of the SBP genes in subsequent studies.


Asunto(s)
Arabidopsis , Calycanthaceae , Calycanthaceae/genética , Calycanthaceae/química , Calycanthaceae/metabolismo , Filogenia , Flores/metabolismo , Hojas de la Planta/metabolismo , Genes de Plantas , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Plantas/metabolismo
3.
Zhongguo Dang Dai Er Ke Za Zhi ; 23(1): 91-97, 2021 Jan.
Artículo en Zh | MEDLINE | ID: mdl-33476544

RESUMEN

OBJECTIVE: To explore the clinical characteristics and genetic findings of patients with infantile intrahepatic cholestasis. METHODS: The clinical data were collected in children who were admitted to the Department of Gastroenterology in Children's Hospital, Capital Institute of Pediatrics from June 2017 to June 2019 and were suspected of inherited metabolic diseases. Next generation sequencing based on target gene panel was used for gene analysis in these children. Sanger sequencing technology was used to verify the genes of the members in this family. RESULTS: Forty patients were enrolled. Pathogenic gene variants were identified in 13 patients (32%), including SLC25A13 gene variation in 3 patients who were diagnosed with citrin deficiency, JAG1 gene variation in 3 patients who were diagnosed with Alagille syndrome, ABCB11 gene variation in 3 patients who were diagnosed with progressive familial intrahepatic cholestasis type 2, HSD3B7 gene variation in 1 patient who was diagnosed with congenital bile acid synthesis defect type 1, AKR1D1 gene variation in 1 patient who was diagnosed with congenital bile acid synthesis defect type 1, NPC1 gene variation in 1 patient who was diagnosed with Niemann-Pick disease, and CFTR gene variation in 1 patient who was diagnosed with cystic fibrosis. CONCLUSIONS: The etiology of infantile intrahepatic cholestasis is complex. Next generation sequencing is helpful in the diagnosis of infantile intrahepatic cholestasis.


Asunto(s)
Colestasis Intrahepática , Citrulinemia , Síndrome de Alagille/genética , Niño , Colestasis Intrahepática/genética , Pruebas Genéticas , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Proteínas de Transporte de Membrana Mitocondrial , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA