Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 322
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
FASEB J ; 38(13): e23766, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38967214

RESUMEN

Dysbiosis of gut microbiota may account for pathobiology in simple fatty liver (SFL), metabolic dysfunction-associated steatohepatitis (MASH), fibrotic progression, and transformation to MASH-associated hepatocellular carcinoma (MASH-HCC). The aim of the present study is to investigate gut dysbiosis in this progression. Fecal microbial rRNA-16S sequencing, absolute quantification, histopathologic, and biochemical tests were performed in mice fed high fat/calorie diet plus high fructose and glucose in drinking water (HFCD-HF/G) or control diet (CD) for 2, 16 weeks, or 14 months. Histopathologic examination verified an early stage of SFL, MASH, fibrotic, or MASH-HCC progression with disturbance of lipid metabolism, liver injury, and impaired gut mucosal barrier as indicated by loss of occludin in ileum mucosa. Gut dysbiosis occurred as early as 2 weeks with reduced α diversity, expansion of Kineothrix, Lactococcus, Akkermansia; and shrinkage in Bifidobacterium, Lactobacillus, etc., at a genus level. Dysbiosis was found as early as MAHS initiation, and was much more profound through the MASH-fibrotic and oncogenic progression. Moreover, the expansion of specific species, such as Lactobacillus johnsonii and Kineothrix alysoides, was confirmed by an optimized method for absolute quantification. Dynamic alterations of gut microbiota were characterized in three stages of early SFL, MASH, and its HCC transformation. The findings suggest that the extent of dysbiosis was accompanied with MASH progression and its transformation to HCC, and the shrinking or emerging of specific microbial species may account at least in part for pathologic, metabolic, and immunologic alterations in fibrogenic progression and malignant transition in the liver.


Asunto(s)
Carcinoma Hepatocelular , Disbiosis , Microbioma Gastrointestinal , Neoplasias Hepáticas , Ratones Endogámicos C57BL , Animales , Ratones , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/microbiología , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/etiología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/microbiología , Neoplasias Hepáticas/etiología , Disbiosis/microbiología , Masculino , Hígado Graso/metabolismo , Hígado Graso/patología , Hígado Graso/microbiología , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Metabolismo de los Lípidos , Hígado/metabolismo , Hígado/patología
2.
Small ; 20(8): e2304110, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37806756

RESUMEN

Atherosclerosis (AS) is the primary reason behind cardiovascular diseases, leading to approximately one-third of global deaths. Developing a novel multi-model probe to detect AS is urgently required. Macrophages are the primary cells from which AS genesis occurs. Utilizing natural macrophage membranes coated on the surface of nanoparticles is an efficient delivery method to target plaque sites. Herein, Fe3 O4 -Cy7 nanoparticles (Fe3 O4 -Cy7 NPs), functionalized using an M2 macrophage membrane and a liposome extruder for Near-infrared fluorescence and Magnetic resonance imaging, are synthesized. These macrophage membrane-coated nanoparticles (Fe3 O4 @M2 NPs) enhance the recognition and uptake using active macrophages. Moreover, they inhibit uptake using inactive macrophages and human coronary artery endothelial cells. The macrophage membrane-coated nanoparticles (Fe3 O4 @M0 NPs, Fe3 O4 @M1 NPs, Fe3 O4 @M2 NPs) can target specific sites depending on the macrophage membrane type and are related to C-C chemofactor receptor type 2 protein content. Moreover, Fe3 O4 @M2 NPs demonstrate excellent biosafety in vivo after injection, showing a significantly higher Fe concentration in the blood than Fe3 O4 -Cy7 NPs. Therefore, Fe3 O4 @M2 NPs effectively retain the physicochemical properties of nanoparticles and depict reduced immunological response in blood circulation. These NPs mainly reveal enhanced targeting imaging capability for atherosclerotic plaque lesions.


Asunto(s)
Aterosclerosis , Nanopartículas , Humanos , Células Endoteliales , Nanopartículas/química , Imagen por Resonancia Magnética/métodos , Aterosclerosis/diagnóstico por imagen
3.
Environ Sci Technol ; 58(10): 4802-4811, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38427711

RESUMEN

Economic and environmentally friendly strategies are needed to promote the bifunctional catalytic removal of carbonyl sulfide (COS) by hydrolysis and hydrogen sulfide (H2S) by oxidation. N doping is considered to be an effective strategy, but the essential and intrinsic role of N dopants in catalysts is still not well understood. Herein, the conjugation of urea and biochar during Cu/biochar annealing produced pyridine N, which increased the combined COS/H2S capacity of the catalyst from 260.7 to 374.8 mg·g-1 and enhanced the turnover frequency of H2S from 2.50 × 10-4 to 5.35 × 10-4 s-1. The nucleophilic nature of pyridine N enhances the moderate basic sites of the catalyst, enabling the attack of protons and strong H2O dissociation. Moreover, pyridine N also forms cavity sites that anchor CuO, improving Cu dispersion and generating more reactive oxygen species. By providing original insight into the pyridine N-induced bifunctional catalytic removal of COS/H2S in a slightly oxygenated and humid atmosphere, this study offers valuable guidance for further C═S and C-S bond-breaking in the degradation of sulfur-containing pollutants.


Asunto(s)
Sulfuro de Hidrógeno , Óxidos de Azufre , Sulfuro de Hidrógeno/metabolismo , Carbón Orgánico , Piridinas
4.
Environ Sci Technol ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38959026

RESUMEN

Fabrication of robust isolated atom catalysts has been a research hotspot in the environment catalysis field for the removal of various contaminants, but there are still challenges in improving the reactivity and stability. Herein, through facile doping alkali metals in Pt catalyst on zirconia (Pt-Na/ZrO2), the atomically dispersed Ptδ+-O(OH)x- associated with alkali metal via oxygen bridge was successfully fabricated. This novel catalyst presented remarkably higher CO and hydrocarbon (HCs: C3H8, C7H8, C3H6, and CH4) oxidation activity than its counterpart (Pt/ZrO2). Systematically direct and solid evidence from experiments and density functional theory calculations demonstrated that the fabricated electron-rich Ptδ+-O(OH)x- related to Na species rather than the original Ptδ+-O(OH)x-, serving as the catalytically active species, can readily react with CO adsorbed on Ptδ+ to produce CO2 with significantly decreasing energy barrier in the rate-determining step from 1.97 to 0.93 eV. Additionally, owing to the strongly adsorbed and activated water by Na species, those fabricated single-site Ptδ+-O(OH)x- linked by Na species could be easily regenerated during the oxidation reaction, thus considerably boosting its oxidation reactivity and durability. Such facile construction of the alkali ion-linked active hydroxyl group was also realized by Li and K modification which could guide to the design of efficient catalysts for the removal of CO and HCs from industrial exhaust.

5.
Environ Sci Technol ; 58(15): 6704-6715, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38574268

RESUMEN

The transformation of toxic arsine (AsH3) gas into valuable elemental arsenic (As0) from industrial exhaust gases is important for achieving sustainable development goals. Although advanced arsenic removal catalysts can improve the removal efficiency of AsH3, toxic arsenic oxides generated during this process have not received adequate attention. In light of this, a novel approach for obtaining stable As0 products was proposed by performing controlled moderate oxidation. We designed a tailored Ni-based catalyst through an acid etching approach to alter interactions between Ni and NaY. As a result, the 1Ni/NaY-H catalyst yielded an unprecedented proportion of As0 as the major product (65%), which is superior to those of other reported catalysts that only produced arsenic oxides. Density functional theory calculations clarified that Ni species changed the electronic structure of oxygen atoms, and the formed [NiIII-OH (µ-O)] active centers facilitated the adsorption of AsH2*, AsH*, and As* reaction intermediates for As-H bond cleavage, thereby decreasing the direct reactivity of oxygen with the arsenic intermediates. This work presents pioneering insights into inhibiting excessive oxidation during AsH3 removal, demonstrating potential environmental applications for recovery of As0 from toxic AsH3.


Asunto(s)
Arsénico , Zeolitas , Níquel/química , Electrones , Oxígeno , Gases
6.
Environ Sci Technol ; 58(1): 859-870, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38060830

RESUMEN

The efficient removal of the highly toxic arsine gas (AsH3) from industrial tail gases under mild conditions remains a formidable challenge. In this study, we utilized the confinement effect of defective carbon nanotubes to fabricate a CuO cluster catalyst (CuO/ACNT), which exhibited a capacity much higher than that of CuO supported on pristine multiwalled carbon nanotubes (MWCNT) (CuO/PCNT) for catalytically oxidizing AsH3 under ambient conditions. The experimental and theoretical results show that nitric acid steam treatment could induce MWCNT surface structural defects, which facilitated more stable anchoring of CuO and then improved the oxygen activation ability, therefore leading to excellent catalytic performance. Density functional theory (DFT) calculations revealed that the catalytic oxidation of AsH3 proceeded through stepwise dehydrogenation and subsequent recombination with oxygen to form As2O3 as the final product.


Asunto(s)
Nanotubos de Carbono , Nanotubos de Carbono/química , Temperatura , Gases , Oxígeno , Oxidación-Reducción
7.
Environ Sci Technol ; 58(24): 10696-10705, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38845125

RESUMEN

Because ozone (O3) is a significant air pollutant, advanced O3 elimination technologies, particularly those under high-humidity conditions, have become an essential research focus. In this study, a nickel-iron layered double hydroxide (NiFe-LDH) was modified via intercalation with octanoate to develop an effective hydrophobic catalyst (NiFe-OAa-LDH) for O3 decomposition. The NiFe-OAa-LDH catalyst sustained its O3 decomposition rate of >98% for 48 h under conditions of 90% relative humidity, 840 L/(g·h) space velocity, and 100 ppm inlet O3 concentration. Moreover, it maintained a decomposition rate of 90% even when tested at a higher airflow rate of 2500 L/(g·h). Based on the changes induced by the Ni-OII to Ni-OIII bonds in NiFe-OAa-LDH during O3 treatment, catalytic O3 decomposition was proposed to occur in two stages. The first stage involved the reaction between the hydroxyl groups and O3, leading to the breakage of the O-H bonds, formation of NiOOH, and structural changes in the catalyst. This transformation resulted in the formation of abundant and stable hydrogen vacancies. According to density functional theory calculations, O3 can be effectively decomposed at the hydrogen vacancies with a low energy barrier during the second stage. This study provides new insights into O3 decomposition.


Asunto(s)
Hidróxidos , Ozono , Hidróxidos/química , Ozono/química , Níquel/química , Catálisis , Contaminantes Atmosféricos/química
8.
Environ Res ; 258: 119360, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38852830

RESUMEN

The aggregation and limited activity of nanoscale zero-valent iron (NZVI) in aqueous media hinder its practical application. In this study, a cost-effective, environmentally friendly, robust, and efficient synthesis method for NZVI-based composite was developed. NZVI@Chitin-modified ZSM-5 (NZVI@C-ZSM) composite was facilely and greenly synthesized by loading NZVI into alkali-modified ZSM-5 molecular sieves after modifying with chitin as a surfactant and binder. NZVI@C-ZSM exhibited remarkable efficacy in TC removal, achieving a removal efficiency of 97.72% within 60 min. Compared with pristine NZVI, NZVI@C-ZSM demonstrated twice the removal efficiency, indicating that NZVI@C-ZSM effectively improved the dispersion and stability of NZVI. This enhancement provided more reactive sites for generating reactive oxygen species (ROS), significantly boosting catalytic activity and durability while reducing the potential risk of secondary pollution. An improved two-parameter pseudo-first-order kinetic model was used to effectively characterize the reaction kinetics. The mechanism for TC removal primarily involved an adsorption process and chemical oxidation-reduction reactions induced by hydroxyl radicals (•OH) and superoxide radicals (•O2-). Three potential degradation pathways for TC were suggested. Furthermore, NZVI@C-ZSM exhibited good resistance to interference, suggesting its broad potential for practical applications in complex environmental conditions. This study offers a viable material and method for addressing the issue of antibiotic-contaminated water, with potential applications in water resource management.

9.
Environ Res ; 250: 118498, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38382665

RESUMEN

Soil heavy metal pollution is an important issue that affects human health and ecological well-being. In-situ thermal treatment techniques, such as self-sustaining smoldering combustion (SSS), have been widely studied for the treatment of organic pollutants. However, the lack of fuel in heavy metal-contaminated soil has hindered its application. In this study, we used corn straw as fuel to investigate the feasibility of SSS remediation for copper and lead in heavy metal-contaminated soil, as well as to explore the remediation mechanism. The results of the study showed that SSS increased soil pH, electrical conductivity (EC), total phosphorus (TP), total potassium (TK), rapidly available phosphorus (AP), and available potassium (AK), while decreasing total nitrogen (TN), alkali-hydrolyzed nitrogen (AN), and cation exchange capacity (CEC). The oxidation state of copper (Cu) increased from 10% to 21%-40%, and the residual state of lead (Pb) increased from 18% to 51%-73%. The Toxicity characteristic leaching procedure (TCLP) of Cu decreased by a maximum of 81.08%, and the extracted state of Diethylenetriaminepentaacetic acid (DTPA) decreased by 67.63%; the TCLP of Pb decreased by a maximum of 81.87%, and DTPA decreased by a maximum of 85.68%. The study indicates that SSS using corn straw as fuel successfully achieved remediation of heavy metal-contaminated soil. However, SSS does not reduce the content of copper and lead; it only changes their forms in the soil. The main reasons for the fixation of copper and lead during the SSS process are the adsorption of biochar, complexation with -OH functional groups, binding with π electrons, and the formation of crystalline compounds. This research provides a reference for the application of SSS in heavy metal-contaminated soil and has potential practical implications.


Asunto(s)
Cobre , Restauración y Remediación Ambiental , Estudios de Factibilidad , Plomo , Contaminantes del Suelo , Cobre/química , Cobre/análisis , Plomo/análisis , Plomo/química , Contaminantes del Suelo/análisis , Contaminantes del Suelo/química , Restauración y Remediación Ambiental/métodos , Zea mays/química , Suelo/química
10.
J Environ Sci (China) ; 139: 182-192, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38105046

RESUMEN

Waste calcium carbide slags (CS), which are widely applied to desulfurisation, are not typically used in denitration. Herein, to well achieve waste control by waste, a facile and high-efficiency denitration strategy is developed using KOH to modify the calcium carbide slags (KCS). Various KCS samples were investigated using a series of physical and chemical characterisations. The performance test results showed that the KOH concentration and reaction temperature are the main factors affecting the denitration efficiency of KCS, and CS modified with 1.5 mol/L KOH (KCS-1.5) can achieve 100% denitration efficiency at 300°C. Such excellent removal efficiency is due to the catalytic oxidation of the oxygen-containing functional groups derived from the KCS. Further studies showed that KOH treatment significantly increased the concentration of oxygen vacancies, nitro compounds, and basic sites of CS. This study provides a novel strategy for the resource utilisation of waste CS in the future.


Asunto(s)
Acetileno , Oxígeno , Temperatura , Oxidación-Reducción , Oxígeno/química
11.
Angew Chem Int Ed Engl ; 63(11): e202318492, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38265308

RESUMEN

Monoatomic dispersion of precious metals on the surface of CeO2 nanocrystals is a highly practical approach for dramatically reducing the usage of precious metals while exploiting the unique properties of single-atom catalysts. However, the specific atomic sites for anchoring precious metal atoms on the CeO2 support and underlying chemical mechanism remain partially unknown. Herein, we show that the terminal hydroxyls on the (100) surface are the most stable sites for anchoring Ag atoms on CeO2 , indicating that CeO2 nanocubes are the most efficient substrates to achieve monoatomic dispersion of Ag. Importantly, the newly identified chemical mechanism for single-metal-atom dispersion on CeO2 nanocubes appears to be generic and can thus be extended to other precious metals (Pt and Pd). In fact, our experiments also show that atomically dispersed Pt/Pd species exhibit morphology- and temperature-dependent CO selectivity in the catalytic CO2 hydrogenation reaction.

12.
Small ; 19(28): e2301169, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37010044

RESUMEN

With the widespread application of lithium iron phosphate batteries, the production capacity of the yellow phosphorus industry has increased sharply, and the treatment of the highly toxic by-product PH3 is facing severe challenges. In this study, a 3D copper-based catalyst (3DCuO/C) that can efficiently decompose PH3 at low temperatures and low oxygen concentrations is synthesized. The PH3 capacity is up to 181.41 mg g-1 , which is superior to that previously reported in the literature. Further studies indicated that the special 3D structure of 3DCuO/C induces oxygen vacancies on the surface of CuO, which is beneficial to the activation of O2 , and then promotes the adsorption and dissociation of PH3 . The doping of P after dissociation determines the formation of Cu-P, and the eventual conversion to Cu3 P leads to the deactivation of CuO active sites. More strikingly, due to the appearance of Cu3 P, the deactivated De-3DCuO/C (Cu3 P/C) exhibited significant activity in the photocatalytic degradation of rhodamine B and photocatalytic oxidation of Hg0 (gas) and can also be a candidate as an anode material for Li batteries after modification, which will provide a more thorough and economical treatment scheme for deactivated catalysts.

13.
Langmuir ; 39(37): 13090-13102, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37669076

RESUMEN

Gaseous thallium (Tl) pollution events, primarily caused by non-ferrous mineral refineries and fossil fuel combustion, have increased over the past few decades. To prevent gaseous Tl distribution from flue gas, MnO2/CeO2@HKUST-1 (MCH) was synthesized and found to achieve a gaseous Tl(I) removal level of up to 90% at 423 K, a weight hourly space velocity (WHSV) of 2000 h-1/mL with an Mn dose of 10%, maintained over 10 h. The best Mn/Ce ratio was found to be 9:1. To further investigate surface kinetic behavior, four commonly used kinetic models were applied, including the Eley-Rideal (ER) model, Langmuir-Hinshelwood (LH) model, Mars-van Krevelen (MVK) model, and pseudo-first-order (PFO) model. While the ER and LH models had the slightest deviation, the MVK model was the most reliable. The CatMAP software was also used to match the simulation deviation. This work demonstrated the Tl removal mechanism and provided insights into the accuracy of kinetic models on minor-radius heavy metal. Thus, this research may help promote the design of reactors, heavy metal removal rates, and flue gas purification technology selection.

14.
Environ Sci Technol ; 57(45): 17553-17565, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37917662

RESUMEN

The hydrogenation of organic sulfur (CS2) present in industrial off-gases to produce sulfur-free hydrocarbons and H2S can be achieved by using noble-metal catalysts. However, there has been a lack of comprehensive investigation into the underlying reaction mechanisms associated with this process. In this study, we have conducted an in-depth examination of the activity and selectivity of Pt- and Pd-loaded alumina-based catalysts, revealing significant disparities between them. Notably, Pd/Al2O3 catalysts exhibit an enhanced performance at low temperatures. Furthermore, we have observed that CS2 displays a higher propensity for conversion to methane when employing Pt/Al2O3 catalysts, while Pd/Al2O3 catalysts demonstrate a greater tendency for coke deposition. By combining experimental observations with theoretical calculations, we revealed that the capability of H2 spillover along with the adsorption capacity of CS2, play pivotal roles in determining the observed differences. Moreover, the key intermediate species involved in the methanation and coke pathways were identified. The intermediate CH2S* is found to be crucial in the methanation pathway, while the intermediate CSH* is identified as significant in the coke pathway.


Asunto(s)
Coque , Adsorción , Óxido de Aluminio , Hidrogenación , Azufre
15.
Environ Sci Technol ; 57(11): 4632-4642, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36912193

RESUMEN

CuX/TiO2 adsorbents with CuO as the active component were prepared via a simple impregnation method for efficient purification of phosphine (PH3) under the conditions of low temperatures (90 °C) and low oxygen concentration (1%). The PH3 breakthrough capacity of optimal adsorbent (Cu30/TiO2) is 136.2 mg(PH3)·gsorbent-1, and the excellent dephosphorization performance is mainly attributed to its abundant sur face-active oxygen and alkaline sites, large specific surface area, and strong interaction between CuO and the support TiO2. Surprisingly, CuO is converted to Cu3P after the dephosphorization by CuX/TiO2. Since Cu3P is a P-type semiconductor with high added value, the deactivated adsorbent (Cu3P/TiO2) is an efficient heterostructure photocatalyst for photocatalytic removal of Hg0 (gas) with the Hg0 removal performance of 92.64% under visible light. This study provides a feasible strategy for the efficient removal and resource conversion of PH3 under low-temperature conditions and the alleviation of the environmental risk of secondary pollution.


Asunto(s)
Cobre , Mercurio , Catálisis , Mercurio/química
16.
BMC Womens Health ; 23(1): 388, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37491234

RESUMEN

BACKGROUND: Increasing evidence has suggested that Corynebacterium kroppenstedtii is associated with some cases of granulomatous mastitis, mostly based on pathology or microbiology. We aimed to identify the clinical characteristics and treatment regimens for granulomatous mastitis with Corynebacterium kroppenstedtii infection. Understanding these clinical features is essential for patient care. METHODS: We retrospectively collected data on 201 patients who were pathologically diagnosed with granulomatous mastitis and had microbiological results of either Corynebacterium kroppenstedtii or no bacterial growth and recorded and analysed their demographics, clinical characteristics, and clinical outcomes. RESULTS: There were 107 patients in the CK group and 94 patients in the negative group. Sinus formation (x2 = 13.028, p = 0.000), time to complete remission at the first treatment period (Z = -3.027, p = 0.002), diameter of breast mass at first-time medical consultancy (Z = -2.539, p = 0.011) and recurrence (x2 = 4.953, p = 0.026) were statistically significant. Age (Z = -1.046, p = 0.295), laterality (x2 = 4.217, p = 0.121), time to presentation since the last delivery (x2 = 0.028, p = 0.868), BMI (Z = -0.947, p = 0.344), lactation time (Z = -1.378, p = 0.168), parity (x2 = 1.799, p = 0.180), gravida (Z = -0.144, p = 0.885), history of lactational mastitis or abscess (x2 = 0.115, p = 0.734), local trauma (x2 = 0.982, p = 0.322), hyperprolactinemia (x2 = 0.706, p = 0.401), erythema nodosum (x2 = 0.292, p = 0.589), and nipple discharge (x2 = 0.281, p = 0.596) did not demonstrate statistical significance. Regarding recurrence related to therapeutic strategy, except for surgery combined with immunosuppressants (x2 = 9.110, p = 0.003), which was statistically significant, none of the other treatment regimens reached statistical significance. The recurrence rate of patients in the CK group using rifampicin in their treatment course was 22.0% (x2 = 4.892, p = 0.027). CONCLUSIONS: Granulomatous mastitis accompanied by Corynebacterium kroppenstedtii more easily forms sinuses and has a higher recurrence rate. Both of the clinical characteristics may indicate that Corynebacterium kroppenstedtii plays an important role in the development and progression of granulomatous mastitis. Lipophilic antibiotics may be essential for granulomatous mastitis with Corynebacterium kroppenstedtii infection.


Asunto(s)
Infecciones por Corynebacterium , Mastitis Granulomatosa , Femenino , Humanos , Corynebacterium , Infecciones por Corynebacterium/complicaciones , Infecciones por Corynebacterium/tratamiento farmacológico , Infecciones por Corynebacterium/diagnóstico , Mastitis Granulomatosa/complicaciones , Mastitis Granulomatosa/tratamiento farmacológico , Estudios Retrospectivos , Adulto , Persona de Mediana Edad
17.
J Environ Manage ; 344: 118469, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37393878

RESUMEN

The total de-alkalization treatment of industrial solid waste red mud (RM) has been a worldwide challenge. Removing the insoluble structural alkali fraction from RM is the key to enhancing the sustainable utilization of RM resources. In this paper, supercritical water (SCW) and leaching agents were used for the first time to de-alkalize the Bayer RM and to remove sulfur dioxide (SO2) from flue gas with the de-alkalized RM slurry. The results showed that the optimum alkali removal and Fe leaching rates of RM-CaO-SW slurry were 97.90 ± 0.88% and 82.70 ± 0.95%, respectively. Results confirmed that the SCW technique accelerated the disruption of (Al-O) and (Si-O) bonds and the structural disintegration of aluminosilicate minerals, facilitating the conversion of insoluble structural alkalis to soluble chemical alkalis. The exchangeable Ca2+ displaced Na+ in the remaining insoluble base, producing soluble sodium salts or alkalis. CaO consumed SiO2, which was tightly bound to Fe2O3 in RM, and released Fe2O3, which promoted Fe leaching. RM-SCW showed the best desulfurization performance, which maintained 88.99 ± 0.0020% at 450 min, followed by RM-CaO-SW (450 min, 60.75 ± 6.00%) and RM (180 min, 88.52% ± 0.00068). The neutralization of alkaline components, the redox of metal oxides, and the liquid-phase catalytic oxidation of Fe contributed to the excellent desulfurization performance of the RM-SCW slurry. A promising approach shown in this study is beneficial to RM waste use, SO2 pollution control, and sustainable growth of the aluminum industry.


Asunto(s)
Dióxido de Silicio , Agua , Agua/química , Residuos Industriales , Aluminio , Óxidos
18.
J Environ Sci (China) ; 126: 396-407, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36503766

RESUMEN

Based on the experimental and theoretical methods, the NO selective catalytic oxidation process was proposed. The experimental results indicated that lattice oxygen was the active site for NO oxide over the α-MnO2(110) surface. In the theoretical study, DFT (density functional theory) and periodic slab modeling were performed on an α-MnO2(110) surface, and two possible NO oxidation mechanisms over the surface were proposed. The non-defect α-MnO2(110) surface showed the highest stability, and the surface Os (the second layer oxygen atoms) position was the most active and stable site. O2 molecule enhanced the joint adsorption process of two NO molecules. The reaction process, including O2 dissociation and O=N-O-O-N=O formation, was calculated to carry out the NO catalytic oxidation mechanism over α-MnO2(110). The results showed that NO oxidation over the α-MnO2(110) surface exhibited the greatest possibility following the route of O=N-O-O-N=O formation. Meanwhile, the formation of O=N-O-O-N=O was the rate-determining step.


Asunto(s)
Compuestos de Manganeso , Óxidos , Catálisis , Oxígeno , Modelos Teóricos
19.
J Environ Sci (China) ; 127: 641-651, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36522093

RESUMEN

Non-thermal plasma (NTP) surface modification technology is a new method to control the surface properties of materials, which has been widely used in the field of environmental protection because of its short action time, simple process and no pollution. In this study, Cu/ACF (activated carbon fiber loaded with copper) adsorbent was modified with NTP to remove H2S and PH3 simultaneously under low temperature and micro-oxygen condition. Meanwhile, the effects of different modified atmosphere (air, N2 and NH3), specific energy input (0-13 J/mL) and modification time (0-30 min) on the removal of H2S and PH3 were investigated. Performance test results indicated that under the same reaction conditions, the adsorbent modified by NH3 plasma with 5 J/mL for 10 min had the best removal effect on H2S and PH3. CO2 temperature-programmed desorption and X-ray photoelectron spectroscopy (XPS) analyzes showed that NH3 plasma modification could introduce amino functional groups on the surface of the adsorbent, and increase the types and number of alkaline sites on the surface. Brunauer-Emmett-Teller and scanning electron microscopy showed that NH3 plasma modification did not significantly change the pore size structure of the adsorbent, but more active components were evenly exposed to the surface, thus improving the adsorption performance. In addition, X-ray diffraction and XPS analysis indicated that the consumption of active components (Cu and Cu2O) and the accumulation of sulfate and phosphate on the surface and inner pores of the adsorbent are the main reasons for the deactivation of the adsorbent.


Asunto(s)
Gases em Plasma , Adsorción , Carbón Orgánico , Óxidos de Azufre , Espectroscopía de Fotoelectrones
20.
J Transl Med ; 20(1): 68, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35115027

RESUMEN

BACKGROUND: Interferon regulatory factor 2 (IRF-2) acts as an anti-oncogene in gastric cancer (GC); however, the underlying mechanism remains unknown. METHODS: This study determined the expression of IRF-2 in GC tissues and adjacent non-tumor tissues using immunohistochemistry (IHC) and explored the predictive value of IRF-2 for the prognoses of GC patients. Cell function and xenograft tumor growth experiments in nude mice were performed to test tumor proliferation ability, both in vitro and in vivo. Chromatin immunoprecipitation sequencing (ChIP-Seq) assay was used to verify the direct target of IRF-2. RESULTS: We found that IRF-2 expression was downregulated in GC tissues and was negatively correlated with the prognoses of GC patients. IRF-2 negatively affected GC cell proliferation both in vitro and in vivo. ChIP-Seq assay showed that IRF-2 could directly activate AMER-1 transcription and regulate the Wnt/ß-catenin signaling pathway, which was validated using IHC, in both tissue microarray and xenografted tumor tissues, western blot analysis, and cell function experiments. CONCLUSIONS: Increased expression of IRF-2 can inhibit tumor growth and affect the prognoses of patients by directly regulating AMER-1 transcription in GC and inhibiting the Wnt/ß-catenin signaling pathway.


Asunto(s)
Neoplasias Gástricas , Proteínas Adaptadoras Transductoras de Señales , Animales , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Factor 2 Regulador del Interferón/genética , Factor 2 Regulador del Interferón/metabolismo , Ratones , Ratones Desnudos , Neoplasias Gástricas/patología , Proteínas Supresoras de Tumor , Vía de Señalización Wnt , beta Catenina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA