Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Noncoding RNA Res ; 4(4): 135-140, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32072081

RESUMEN

The 31- and 32-nt 5'-fragments of Y4-RNA (Y4RNAfr) exist abundantly in human plasma. The Y4RNAfr can function as 5'-half-tRNA-type sgRNA for tRNase ZL, although we do not know yet what its physiological roles are and what cellular RNAs are its genuine targets. In this paper, we analyzed the effects of the Y4RNAfr on cell viability and transcriptomes using HL60, RPMI-8226, and HEK293 cells, and Y4RNAfr-binding RNAs in A549 cells. Although the Y4RNAfr hardly affected the viability of HL60, RPMI-8226, and HEK293 cells, it significantly affected their transcriptome. The DAVID analysis for > 2-fold upregulated and downregulated genes suggested that the Y4RNAfr may affect various KEGG pathways. We obtained 108 Y4RNAfr-binding RNAs in A549 cells, searched potential secondary structures of complexes between theY4RNAfr and its binding RNAs for the pre-tRNA-like structure, and found many such structures. One of the five best fitted structures was for the MKI67 mRNA, suggesting that the Y4RNAfr can decrease the cellular MKI67 level through guiding the cleavage of the MKI67 mRNA by tRNase ZL. This may be one of the underlying mechanisms for the reported observation that the Y4RNAfr suppresses the proliferation of A549 cells.

2.
PLoS One ; 10(3): e0118631, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25730316

RESUMEN

Several pieces of evidence suggest that small RNA degradation products together with tRNase ZL appear to form another layer of the whole gene regulatory network. The degraded RNA such as a 5'-half-tRNA and an rRNA fragment function as small guide RNA (sgRNA) to guide the enzyme to target RNA. We were curious whether there exist RNAs in plasma that can function as sgRNAs for tRNase ZL, whether these RNAs are working as signaling molecules between cells to fulfill physiological roles, and whether there are any differences in plasma sgRNA species and levels between normal and pathological conditions. Here, we analyzed small plasma RNAs from three healthy persons and three multiple myeloma patients for potential sgRNAs by deep sequencing. We also examined small RNAs from peripheral blood mononuclear cells (PBMC) of three healthy persons and three myeloma patients and from various cultured human cell lines for sgRNAs. We found that read-number distribution patterns of plasma and PBMC RNAs differ between persons in the range of 5-40 nt and that there are many RNA species that exist significantly more or less abundantly in the plasma or PBMC of the myeloma patients than those of the healthy persons. Furthermore, we found that there are many potential sgRNAs in the 5-40-nt RNAs and that, among them, a 31-nt RNA fragment derived from 94-nt Y4-RNA, which can function as a 5'-half-tRNA-type sgRNA, is overwhelmingly abundant in the plasma of 2/3 of the examinees. These observations suggest that the gene regulatory network via tRNase ZL and sgRNA may be extended intercellularly.


Asunto(s)
Leucocitos Mononucleares/metabolismo , ARN Guía de Kinetoplastida/sangre , Secuencia de Bases , Células Cultivadas , Endorribonucleasas/sangre , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Células Jurkat , Leucocitos Mononucleares/citología , Mieloma Múltiple/sangre , Mieloma Múltiple/patología , Conformación de Ácido Nucleico , ARN/análisis , ARN/sangre , ARN/aislamiento & purificación , ARN Guía de Kinetoplastida/análisis , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA