Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Biol Chem ; 295(5): 1225-1239, 2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-31819007

RESUMEN

Glycan biosynthesis relies on nucleotide sugars (NSs), abundant metabolites that serve as monosaccharide donors for glycosyltransferases. In vivo, signal-dependent fluctuations in NS levels are required to maintain normal cell physiology and are dysregulated in disease. However, how mammalian cells regulate NS levels and pathway flux remains largely uncharacterized. To address this knowledge gap, here we examined UDP-galactose 4'-epimerase (GALE), which interconverts two pairs of essential NSs. Using immunoblotting, flow cytometry, and LC-MS-based glycolipid and glycan profiling, we found that CRISPR/Cas9-mediated GALE deletion in human cells triggers major imbalances in NSs and dramatic changes in glycolipids and glycoproteins, including a subset of integrins and the cell-surface death receptor FS-7-associated surface antigen. In particular, we observed substantial decreases in total sialic acid, galactose, and GalNAc levels in glycans. These changes also directly impacted cell signaling, as GALE-/- cells exhibited FS-7-associated surface antigen ligand-induced apoptosis. Our results reveal a role of GALE-mediated NS regulation in death receptor signaling and may have implications for the molecular etiology of illnesses characterized by NS imbalances, including galactosemia and metabolic syndrome.


Asunto(s)
Glucolípidos/metabolismo , Glicoproteínas/metabolismo , Azúcares/metabolismo , UDPglucosa 4-Epimerasa/química , UDPglucosa 4-Epimerasa/metabolismo , Receptor fas/metabolismo , Apoptosis/genética , Cromatografía Liquida , Desoxiazúcares/metabolismo , Técnicas de Inactivación de Genes , Glucolípidos/biosíntesis , Glucolípidos/química , Glicoproteínas/biosíntesis , Glicoproteínas/química , Glicosilación , Células HEK293 , Células HeLa , Humanos , Espectrometría de Masas , Ácido N-Acetilneuramínico/metabolismo , Polisacáridos/química , Polisacáridos/metabolismo , Receptores de Superficie Celular/metabolismo , UDPglucosa 4-Epimerasa/genética , Receptor fas/química
2.
Proc Natl Acad Sci U S A ; 114(4): 752-757, 2017 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-28069944

RESUMEN

Soluble klotho, the shed ectodomain of the antiaging membrane protein α-klotho, is a pleiotropic endocrine/paracrine factor with no known receptors and poorly understood mechanism of action. Soluble klotho down-regulates growth factor-driven PI3K signaling, contributing to extension of lifespan, cardioprotection, and tumor inhibition. Here we show that soluble klotho binds membrane lipid rafts. Klotho binding to rafts alters lipid organization, decreases membrane's propensity to form large ordered domains for endocytosis, and down-regulates raft-dependent PI3K/Akt signaling. We identify α2-3-sialyllactose present in the glycan of monosialogangliosides as targets of soluble klotho. α2-3-Sialyllactose is a common motif of glycans. To explain why klotho preferentially targets lipid rafts we show that clustering of gangliosides in lipid rafts is important. In vivo, raft-dependent PI3K signaling is up-regulated in klotho-deficient mouse hearts vs. wild-type hearts. Our results identify ganglioside-enriched lipid rafts to be receptors that mediate soluble klotho regulation of PI3K signaling. Targeting sialic acids may be a general mechanism for pleiotropic actions of soluble klotho.


Asunto(s)
Gangliósidos/metabolismo , Glucuronidasa/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Microdominios de Membrana/metabolismo , Transducción de Señal/fisiología , Animales , Fenómenos Biofísicos/fisiología , Línea Celular , Línea Celular Tumoral , Células HEK293 , Células HeLa , Humanos , Proteínas Klotho , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo
3.
PLoS Pathog ; 12(11): e1006010, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27820863

RESUMEN

The human pathogenic parasite Trypanosoma brucei possess both de novo and salvage routes for the biosynthesis of pyrimidine nucleotides. Consequently, they do not require salvageable pyrimidines for growth. Thymidine kinase (TK) catalyzes the formation of dTMP and dUMP and is one of several salvage enzymes that appear redundant to the de novo pathway. Surprisingly, we show through analysis of TK conditional null and RNAi cells that TK is essential for growth and for infectivity in a mouse model, and that a catalytically active enzyme is required for its function. Unlike humans, T. brucei and all other kinetoplastids lack dCMP deaminase (DCTD), which provides an alternative route to dUMP formation. Ectopic expression of human DCTD resulted in full rescue of the RNAi growth phenotype and allowed for selection of viable TK null cells. Metabolite profiling by LC-MS/MS revealed a buildup of deoxypyrimidine nucleosides in TK depleted cells. Knockout of cytidine deaminase (CDA), which converts deoxycytidine to deoxyuridine led to thymidine/deoxyuridine auxotrophy. These unexpected results suggested that T. brucei encodes an unidentified 5'-nucleotidase that converts deoxypyrimidine nucleotides to their corresponding nucleosides, leading to their dead-end buildup in TK depleted cells at the expense of dTTP pools. Bioinformatics analysis identified several potential candidate genes that could encode 5'-nucleotidase activity including an HD-domain protein that we show catalyzes dephosphorylation of deoxyribonucleotide 5'-monophosphates. We conclude that TK is essential for synthesis of thymine nucleotides regardless of whether the nucleoside precursors originate from the de novo pathway or through salvage. Reliance on TK in the absence of DCTD may be a shared vulnerability among trypanosomatids and may provide a unique opportunity to selectively target a diverse group of pathogenic single-celled eukaryotes with a single drug.


Asunto(s)
Nucleótidos/biosíntesis , Timidina Quinasa/metabolismo , Trypanosoma brucei brucei/enzimología , Tripanosomiasis Africana/enzimología , Tripanosomiasis Africana/parasitología , Animales , Western Blotting , Cromatografía Liquida , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena de la Polimerasa , Pirimidinas/metabolismo , Espectrometría de Masas en Tándem , Transfección
4.
FASEB J ; 31(8): 3574-3586, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28442546

RESUMEN

Soluble Klotho (sKlotho) is the shed ectodomain of antiaging membrane Klotho that contains 2 extracellular domains KL1 and KL2, each of which shares sequence homology to glycosyl hydrolases. sKlotho elicits pleiotropic cellular responses with a poorly understood mechanism of action. Notably, in injury settings, sKlotho confers cardiac and renal protection by down-regulating calcium-permeable transient receptor potential canonical type isoform 6 (TRPC6) channels in cardiomyocytes and glomerular podocytes. Inhibition of PI3K-dependent exocytosis of TRPC6 is thought to be the underlying mechanism, and recent studies showed that sKlotho interacts with α2-3-sialyllactose-containing gangliosides enriched in lipid rafts to inhibit raft-dependent PI3K signaling. However, the structural basis for binding and recognition of α2-3-sialyllactose by sKlotho is unknown. Using homology modeling followed by docking, we identified key protein residues in the KL1 domain that are likely involved in binding sialyllactose. Functional experiments based on the ability of Klotho to down-regulate TRPC6 channel activity confirm the importance of these residues. Furthermore, KL1 domain binds α2-3-sialyllactose, down-regulates TRPC6 channels, and exerts protection against stress-induced cardiac hypertrophy in mice. Our results support the notion that sialogangliosides and lipid rafts are membrane receptors for sKlotho and that the KL1 domain is sufficient for the tested biologic activities. These findings can help guide the design of a simpler Klotho mimetic.-Wright, J. D., An, S.-W., Xie, J., Yoon, J., Nischan, N., Kohler, J. J., Oliver, N., Lim, C., Huang, C.-L. Modeled structural basis for the recognition of α2-3-sialyllactose by soluble Klotho.


Asunto(s)
Glucuronidasa/metabolismo , Lactosa/análogos & derivados , Ácidos Siálicos/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Conformación de Carbohidratos , Cardiomegalia/metabolismo , Simulación por Computador , Gangliósidos/química , Gangliósidos/metabolismo , Regulación de la Expresión Génica/fisiología , Glucuronidasa/genética , Células HEK293 , Humanos , Proteínas Klotho , Lactosa/química , Lactosa/metabolismo , Microdominios de Membrana , Ratones , Modelos Moleculares , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Conformación Proteica , Ácidos Siálicos/química , Transducción de Señal/fisiología
5.
Glycobiology ; 26(8): 789-96, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27066802

RESUMEN

Cell surface glycans are critical mediators of cell-cell, cell-ligand, and cell-pathogen interactions. By controlling the set of glycans displayed on the surface of a cell, it is possible to gain insight into the biological functions of glycans. Moreover, control of glycan expression can be used to direct cellular behavior. While genetic approaches to manipulate glycosyltransferase gene expression are available, their utility in glycan engineering has limitations due to the combinatorial nature of glycan biosynthesis and the functional redundancy of glycosyltransferase genes. Biochemical and chemical strategies offer valuable complements to these genetic approaches, notably by enabling introduction of unnatural functionalities, such as fluorophores, into cell surface glycans. Here, we describe some of the most recent developments in glycoengineering of cell surfaces, with an emphasis on strategies that employ novel chemical reagents. We highlight key examples of how these advances in cell surface glycan engineering enable study of cell surface glycans and their function. Exciting new technologies include synthetic lipid-glycans, new chemical reporters for metabolic oligosaccharide engineering to allow tandem and in vivo labeling of glycans, improved chemical and enzymatic methods for glycoproteomics, and metabolic glycosyltransferase inhibitors. Many chemical and biochemical reagents for glycan engineering are commercially available, facilitating their adoption by the biological community.


Asunto(s)
Ingeniería Celular/métodos , Membrana Celular/química , Glicosiltransferasas/química , Monosacáridos/química , Polisacáridos/química , Animales , Secuencia de Carbohidratos , Membrana Celular/efectos de los fármacos , Membrana Celular/enzimología , Inhibidores Enzimáticos/farmacología , Células Eucariotas/química , Células Eucariotas/citología , Células Eucariotas/efectos de los fármacos , Células Eucariotas/enzimología , Colorantes Fluorescentes/química , Glicómica/métodos , Glicosilación , Glicosiltransferasas/antagonistas & inhibidores , Humanos , Proteómica/métodos , Coloración y Etiquetado/métodos
6.
Glycoconj J ; 32(7): 515-29, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25957566

RESUMEN

Carbohydrates, in addition to their metabolic functions, serve important roles as receptors, ligands, and structural molecules for diverse biological processes. Insight into carbohydrate biology and mechanisms has been aided by metabolic oligosaccharide engineering (MOE). In MOE, unnatural carbohydrate analogs with novel functional groups are incorporated into cellular glycoconjugates and used to probe biological systems. While MOE has expanded knowledge of carbohydrate biology, limited metabolism of unnatural carbohydrate analogs restricts its use. Here we assess metabolism of SiaDAz, a diazirine-modified analog of sialic acid, and its cell-permeable precursor, Ac4ManNDAz. We show that the efficiency of Ac4ManNDAz and SiaDAz metabolism depends on cell type. Our results indicate that different cell lines can have different metabolic roadblocks in the synthesis of cell surface SiaDAz. These findings point to roles for promiscuous intracellular esterases, kinases, and phosphatases during unnatural sugar metabolism and provide guidance for ways to improve MOE.


Asunto(s)
Glicoconjugados/metabolismo , Hexosaminas/metabolismo , Ingeniería Metabólica , Ácido N-Acetilneuramínico/metabolismo , Metabolismo de los Hidratos de Carbono , Carbohidratos/química , Línea Celular , Diazometano/química , Esterasas/química , Esterasas/metabolismo , Citometría de Flujo , Glicoconjugados/química , Hexosaminas/química , Humanos , Ácido N-Acetilneuramínico/química , Oligosacáridos/química , Oligosacáridos/metabolismo
7.
Angew Chem Int Ed Engl ; 54(6): 1950-3, 2015 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-25521313

RESUMEN

The delivery of free molecules into the cytoplasm and nucleus by using arginine-rich cell-penetrating peptides (CPPs) has been limited to small cargoes, while large cargoes such as proteins are taken up and trapped in endocytic vesicles. Based on recent work, in which we showed that the transduction efficiency of arginine-rich CPPs can be greatly enhanced by cyclization, the aim was to use cyclic CPPs to transport full-length proteins, in this study green fluorescent protein (GFP), into the cytosol of living cells. Cyclic and linear CPP-GFP conjugates were obtained by using azido-functionalized CPPs and an alkyne-functionalized GFP. Our findings reveal that the cyclic-CPP-GFP conjugates are internalized into live cells with immediate bioavailability in the cytosol and the nucleus, whereas linear CPP analogues do not confer GFP transduction. This technology expands the application of cyclic CPPs to the efficient transport of functional full-length proteins into live cells.


Asunto(s)
Péptidos de Penetración Celular/administración & dosificación , Productos del Gen tat/administración & dosificación , Proteínas Fluorescentes Verdes/química , Proteínas/administración & dosificación , Disponibilidad Biológica , Péptidos de Penetración Celular/farmacocinética , Productos del Gen tat/química , Productos del Gen tat/farmacocinética , Proteínas/farmacocinética
8.
J Org Chem ; 79(22): 10727-33, 2014 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-25333794

RESUMEN

The attachment of linear polyethylene glycol (PEG) to peptides and proteins for their stabilization for in vivo applications is a milestone in pharmaceutical research and protein-drug development. However, conventional methods often lead to heterogeneous PEGylation mixtures with reduced protein activity. Current synthetic efforts aim to provide site-specific approaches by chemoselective targeting of canonical and noncanonical amino acids and to improve the PEG architecture. This synopsis highlights recent work in this area, which also resulted in improved pharmacokinetics of peptide and protein therapeutics.


Asunto(s)
Péptidos/química , Polietilenglicoles/química , Proteínas/química , Química Farmacéutica/métodos , Péptidos/farmacocinética , Conformación Proteica , Proteínas/farmacocinética
10.
Elife ; 4: e09545, 2015 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-26512888

RESUMEN

Cholera toxin (CT) enters and intoxicates host cells after binding cell surface receptors using its B subunit (CTB). The ganglioside (glycolipid) GM1 is thought to be the sole CT receptor; however, the mechanism by which CTB binding to GM1 mediates internalization of CT remains enigmatic. Here we report that CTB binds cell surface glycoproteins. Relative contributions of gangliosides and glycoproteins to CTB binding depend on cell type, and CTB binds primarily to glycoproteins in colonic epithelial cell lines. Using a metabolically incorporated photocrosslinking sugar, we identified one CTB-binding glycoprotein and demonstrated that the glycan portion of the molecule, not the protein, provides the CTB interaction motif. We further show that fucosylated structures promote CTB entry into a colonic epithelial cell line and subsequent host cell intoxication. CTB-binding fucosylated glycoproteins are present in normal human intestinal epithelia and could play a role in cholera.


Asunto(s)
Toxina del Cólera/metabolismo , Proteínas de la Membrana/metabolismo , Procesamiento Proteico-Postraduccional , Receptores de Superficie Celular/metabolismo , Línea Celular , Células Epiteliales/metabolismo , Gangliósido G(M1)/metabolismo , Glicosilación , Humanos , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA