Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neurosci ; 34(4): 1370-9, 2014 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-24453327

RESUMEN

Formation of proper neuromuscular connections is a process coordinated by both motoneuron-intrinsic and target-dependent programs. Under these programs, motoneurons innervate target muscles, escape programmed cell death during fetal development, and form neuromuscular junctions (NMJ). Although a number of studies have revealed molecules involved in axon guidance to target muscles and NMJ formation, little is known about the molecular mechanisms linking intramuscular innervation and target-derived trophic factor-dependent prevention of motoneuron apoptosis. Here we studied the physiological function of CLAC-P/collagen XXV, a transmembrane-type collagen originally identified as a component of senile plaque amyloid of Alzheimer's disease brains, by means of generating Col25a1-deficient (KO) mice. Col25a1 KO mice died immediately after birth of respiratory failure. In Col25a1 KO mice, motor axons projected properly toward the target muscles but failed to elongate and branch within the muscle, followed by degeneration of axons. Failure of muscular innervation in Col25a1 KO mice led to excessive apoptosis during development, resulting in almost complete and exclusive loss of spinal motoneurons and immaturity in skeletal muscle development. Bax deletion in Col25a1 KO mice rescued motoneurons from apoptosis, although motor axons remained halted around the muscle entry site. Furthermore, these motoneurons were positive for phosphorylated c-Jun, an indicator of insufficient supply of target-derived survival signals. Together, these observations indicate that CLAC-P/collagen XXV is a novel essential factor that regulates the initial phase of intramuscular motor innervation, which is required for subsequent target-dependent motoneuron survival and NMJ formation during development.


Asunto(s)
Colágeno/metabolismo , Neuronas Motoras/metabolismo , Músculo Esquelético/inervación , Neurogénesis/fisiología , Unión Neuromuscular/crecimiento & desarrollo , Animales , Inmunohistoquímica , Hibridación in Situ , Etiquetado Corte-Fin in Situ , Ratones , Ratones Noqueados , Neuronas Motoras/citología , Unión Neuromuscular/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
2.
Cell Rep ; 29(13): 4362-4376.e6, 2019 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-31875546

RESUMEN

Intramuscular motor innervation is an essential process in neuromuscular development. Recently, mutations in COL25A1, encoding CLAC-P/collagen XXV, have been linked to the development of a congenital cranial dysinnervation disorder (CCDD). Yet the molecular mechanisms of intramuscular innervation and the etiology of CCDD related to COL25A1 have remained elusive. Here, we report that muscle-derived collagen XXV is indispensable for intramuscular innervation. In developing skeletal muscles, Col25a1 expression is tightly regulated by muscle excitation. In vitro and cell-based assays reveal a direct interaction between collagen XXV and receptor protein tyrosine phosphatases (PTPs) σ and δ. Motor explant assays show that expression of collagen XXV in target cells attracts motor axons, but this is inhibited by exogenous PTPσ/δ. CCDD mutations attenuate motor axon attraction by reducing collagen XXV-PTPσ/δ interaction. Overall, our study identifies PTPσ/δ as putative receptors for collagen XXV, implicating collagen XXV and PTPσ/δ in intramuscular innervation and a developmental ocular motor disorder.


Asunto(s)
Músculo Esquelético/metabolismo , Colágenos no Fibrilares/genética , Trastornos de la Motilidad Ocular/genética , Proteínas Tirosina Fosfatasas no Receptoras/genética , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/genética , Cráneo/metabolismo , Animales , Axones/metabolismo , Axones/ultraestructura , Línea Celular , Diafragma/anomalías , Diafragma/inervación , Diafragma/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Neuronas Motoras/metabolismo , Neuronas Motoras/ultraestructura , Músculo Esquelético/anomalías , Músculo Esquelético/inervación , Mioblastos/metabolismo , Mioblastos/patología , Colágenos no Fibrilares/metabolismo , Trastornos de la Motilidad Ocular/congénito , Trastornos de la Motilidad Ocular/metabolismo , Trastornos de la Motilidad Ocular/patología , Unión Proteica , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/metabolismo , Nervio Ciático/lesiones , Nervio Ciático/metabolismo , Neuropatía Ciática/cirugía , Transducción de Señal , Cráneo/anomalías , Cráneo/inervación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA