Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
2.
Nat Chem Biol ; 19(6): 778-789, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36864192

RESUMEN

Mucinolytic bacteria modulate host-microbiota symbiosis and dysbiosis through their ability to degrade mucin O-glycans. However, how and to what extent bacterial enzymes are involved in the breakdown process remains poorly understood. Here we focus on a glycoside hydrolase family 20 sulfoglycosidase (BbhII) from Bifidobacterium bifidum, which releases N-acetylglucosamine-6-sulfate from sulfated mucins. Glycomic analysis showed that, in addition to sulfatases, sulfoglycosidases are involved in mucin O-glycan breakdown in vivo and that the released N-acetylglucosamine-6-sulfate potentially affects gut microbial metabolism, both of which were also supported by a metagenomic data mining analysis. Enzymatic and structural analysis of BbhII reveals the architecture underlying its specificity and the presence of a GlcNAc-6S-specific carbohydrate-binding module (CBM) 32 with a distinct sugar recognition mode that B. bifidum takes advantage of to degrade mucin O-glycans. Comparative analysis of the genomes of prominent mucinolytic bacteria also highlights a CBM-dependent O-glycan breakdown strategy used by B. bifidum.


Asunto(s)
Ecosistema , Mucinas , Mucinas/metabolismo , Polisacáridos/metabolismo , Bacterias/metabolismo
3.
Biochem Biophys Res Commun ; 728: 150345, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38971001

RESUMEN

The transfer of nitrogen fixation (nif) genes from diazotrophs to non-diazotrophic hosts is of increasing interest for engineering biological nitrogen fixation. A recombinant Escherichia coli strain expressing Azotobacter vinelandii 18 nif genes (nifHDKBUSVQENXYWZMF, nifiscA, and nafU) were previously constructed and showed nitrogenase activity. In the present study, we constructed several E. coli strain derivatives in which all or some of the 18 nif genes were additionally integrated into the fliK locus of the chromosome in various combinations. E. coli derivatives with the chromosomal integration of nifiscA, nifU, and nifS, which are involved in the biosynthesis of the [4Fe-4S] cluster of dinitrogenase reductase, exhibited enhanced nitrogenase activity. We also revealed that overexpression of E. coli fldA and ydbK, which encode flavodoxin and flavodoxin-reducing enzyme, respectively, enhanced nitrogenase activity, likely by facilitating electron transfer to dinitrogenase reductase. The additional expression of nifM, putatively involved in maturation of dinitrogenase reductase, further enhanced nitrogenase activity and the amount of soluble NifH. By combining these factors, we successfully improved nitrogenase activity 10-fold.

4.
Biochemistry ; 62(12): 1833-1837, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37167424

RESUMEN

The hydroxyamidotransferase TsnB9 catalyzes hydroxylamine transfer from l-glutamic acid γ-monohydroxamate to the carboxyl group of trichostatic acid to produce the terminal hydroxamic acid group of trichostatin A, which is a potent inhibitor of histone deacetylase (HDAC). The reaction catalyzed by TsnB9 is similar to that catalyzed by glutamine-dependent asparagine synthetase, but the trichostatic acid recognition mechanism remains unclear. Here, we determine the crystal structure of TsnB9 composed of the N-terminal glutaminase domain and the C-terminal synthetase domain. Two consecutive phenylalanine residues, which are not found in glutamine-dependent asparagine synthetase, in the N-terminal glutaminase domain structurally form the bottom of the hydrophobic pocket in the C-terminal synthetase domain. Mutational and computational analyses of TsnB9 suggest five aromatic residues, including the two consecutive phenylalanine residues, in the hydrophobic pocket are important for the recognition of the dimethylaniline moiety of trichostatic acid. These insights lead us to the discovery of hydroxyamidotransferase to produce terminal hydroxamic acid group-containing HDAC inhibitors different from trichostatin A.


Asunto(s)
Aspartatoamoníaco Ligasa , Glutaminasa , Glutamina , Ácidos Hidroxámicos/química , Proteínas , Inhibidores de Histona Desacetilasas/farmacología , Fenilalanina
5.
Plant J ; 110(2): 470-481, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35061931

RESUMEN

The nonexpressor of pathogenesis-related (NPR) gene family is well known to play a crucial role in transactivation of TGA transcription factors for salicylic acid (SA)-responsive genes, including pathogenesis-related protein 1 (PR1), during plants' immune response after pathogen attack in the model dicot Arabidopsis thaliana. However, little is known about NPR gene functions in monocots. We therefore explored the functions of NPRs in SA signaling in the model monocot Brachypodium distachyon. BdNPR1 and BdNPR2/3 share structural similarities with A. thaliana AtNPR1/2 and AtNPR3/4 subfamilies, respectively. The transcript level of BdNPR2 but not BdNPR1/3 appeared to be positively regulated in leaves in response to methyl salicylate. Reporter assays in protoplasts showed that BdNPR2 positively regulated BdTGA1-mediated activation of PR1. This transactivation occurred in an SA-dependent manner through SA binding at Arg468 of BdNPR2. In contrast, BdNPR1 functioned as a suppressor of BdNPR2/BdTGA1-mediated transcription of PR1. Collectively, our findings reveal that the TGA-promoted transcription of SA-inducible PR1 is orchestrated by the activator BdNPR2 and the repressor BdNPR1, which function competitively in B. distachyon.


Asunto(s)
Arabidopsis , Brachypodium , Arabidopsis/genética , Arabidopsis/metabolismo , Brachypodium/genética , Brachypodium/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Salicílico/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Activación Transcripcional/genética
6.
J Am Chem Soc ; 144(12): 5435-5440, 2022 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-35293722

RESUMEN

Pyridoxal 5'-phosphate (PLP)-dependent enzymes are a group of versatile enzymes that catalyze various reactions, but only a small number of them react with O2. Here, we report an unprecedented PLP-dependent enzyme, NphE, that catalyzes both transamination and two-electron oxidation using O2 as an oxidant. Our intensive analysis reveals that NphE transfers the l-glutamate-derived amine to 1,3,6,8-tetrahydroxynaphthalene-derived mompain to form 8-amino-flaviolin (8-AF) via a highly conjugated quinonoid intermediate that is reactive with O2. During the NphE reaction, O2 is reduced to yield H2O2. An integrated technique involving NphE structure prediction by AlphaFold v2.0 and molecular dynamics simulation suggested the O2-accessible cavity. Our in vivo results demonstrated that 8-AF is a genuine biosynthetic intermediate for the 1,3,6,8-tetrahydroxynaphthalene-derived meroterpenoid naphterpin without an amino group, which was supported by site-directed mutagenesis. This study clearly establishes the NphE reaction product 8-AF as a common intermediate with a cryptic amino group for the biosynthesis of terpenoid-polyketide hybrid natural products.


Asunto(s)
Productos Biológicos , Peróxido de Hidrógeno , Oxidación-Reducción , Estrés Oxidativo , Fosfato de Piridoxal/química
7.
J Am Chem Soc ; 144(37): 16715-16719, 2022 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-36067081

RESUMEN

Phosphonates often exhibit biological activities by mimicking the phosphates and carboxylates of biological molecules. The phosphonate phosphonothrixin (PTX), produced by the soil-dwelling bacterium Saccharothrix sp. ST-888, exhibits herbicidal activity. In this study, we propose a complete biosynthetic pathway for PTX by reconstituting its biosynthesis in vitro. Our intensive analysis demonstrated that two dehydrogenases together reduce phosphonopyruvate (PnPy) to 2-hydroxy-3-phosphonopropanoic acid (HPPA) to accelerate the thermodynamically unfavorable rearrangement of phosphoenolpyruvate (PEP) to PnPy. The next four enzymes convert HPPA to (3-hydroxy-2-oxopropyl)phosphonic acid (HOPA). In the final stage of PTX biosynthesis, the "split-gene" transketolase homologue, PtxB5/6, catalyzes the transfer of a two-carbon unit attached to the thiamine diphosphate (TPP) cofactor (provided by the acetohydroxyacid synthase homologue, PtxB7) to HOPA to produce PTX. This study reveals a unique C-C bond formation in which two distinct TPP-dependent enzymes, PtxB5/6 and PtxB7, divide the work to transfer an acetyl group, highlighting an unprecedented biosynthetic strategy for natural products.


Asunto(s)
Productos Biológicos , Organofosfonatos , Bacterias/metabolismo , Vías Biosintéticas , Carbono , Organofosfonatos/química , Oxidorreductasas/metabolismo , Fosfatos , Fosfoenolpiruvato , Suelo , Tiamina Pirofosfato , Transcetolasa/metabolismo
8.
J Am Chem Soc ; 144(28): 12954-12960, 2022 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-35771530

RESUMEN

Nitrogen-nitrogen bond-containing functional groups are rare, but they are found in a considerably wide class of natural products. Recent clarifications of the biosynthetic routes for such functional groups shed light onto overlooked biosynthetic genes distributed across the bacterial kingdom, highlighting the presence of yet-to-be identified natural products with peculiar functional groups. Here, the genome-mining approach targeting a unique hydrazine-forming gene led to the discovery of actinopyridazinones A (1) and B (2), the first natural products with dihydropyridazinone rings. The structure of actinopyridazinone A was unambiguously established by total synthesis. Biosynthetic studies unveiled the structural diversity of natural hydrazines derived from this family of N-N bond-forming enzymes.


Asunto(s)
Productos Biológicos , Familia de Multigenes , Productos Biológicos/química , Hidrazinas/química , Nitrógeno
9.
J Am Chem Soc ; 144(35): 16164-16170, 2022 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-35998388

RESUMEN

Natural products containing an aziridine ring, such as mitomycin C and azinomycin B, exhibit antitumor activities by alkylating DNA via their aziridine rings; however, the biosynthetic mechanisms underlying the formation of these rings have not yet been elucidated. We herein investigated the biosynthesis of vazabitide A, the structure of which is similar to that of azinomycin B, and demonstrated that Vzb10/11, with no similarities to known enzymes, catalyzed the formation of the aziridine ring via sulfate elimination. To elucidate the detailed reaction mechanism, crystallization of Vzb10/11 and the homologous enzyme, AziU3/U2, in the biosynthesis of azinomycin B was attempted, and the structure of AziU3/U2, which had a new protein fold overall, was successfully determined. The structural analysis revealed that these enzymes adjusted the dihedral angle between the amino group and the adjacent sulfate group of the substrate to almost 180° and enhanced the nucleophilicity of the C6-amino group temporarily, facilitating the SN2-like reaction to form the aziridine ring. The present study reports for the first time the molecular basis for aziridine ring formation.


Asunto(s)
Aziridinas , Sulfatos , Aziridinas/química , ADN/química , Mitomicina
10.
Nat Chem Biol ; 16(4): 415-422, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32042199

RESUMEN

In biotin biosynthesis, the conversion of pimeloyl intermediates to biotin is catalyzed by a universal set of four enzymes: BioF, BioA, BioD and BioB. We found that the gene homologous to bioA, the product of which is involved in the conversion of 8-amino-7-oxononanoate (AON) to 7,8-diaminononanoate (DAN), is missing in the genome of the cyanobacterium Synechocystis sp. PCC 6803. We provide structural and biochemical evidence showing that a novel dehydrogenase, BioU, is involved in biotin biosynthesis and functionally replaces BioA. This enzyme catalyzes three reactions: formation of covalent linkage with AON to yield a BioU-DAN conjugate at the ε-amino group of Lys124 of BioU using NAD(P)H, carboxylation of the conjugate to form BioU-DAN-carbamic acid, and release of DAN-carbamic acid using NAD(P)+. In this biosynthetic pathway, BioU is a suicide enzyme that loses the Lys124 amino group after a single round of reaction.


Asunto(s)
Biotina/biosíntesis , Oxidorreductasas/ultraestructura , Synechocystis/metabolismo , Secuencia de Aminoácidos , Aminoácidos/química , Aminoácidos/metabolismo , Aminoácidos Diaminos/química , Aminoácidos Diaminos/metabolismo , Proteínas Bacterianas/metabolismo , Vías Biosintéticas , Biotina/metabolismo , Catálisis , Clonación Molecular , Cianobacterias/genética , Cianobacterias/metabolismo , ADN Bacteriano/metabolismo , Escherichia coli/metabolismo , Genes Bacterianos , Oxidorreductasas/metabolismo , Synechocystis/genética , Transaminasas/metabolismo
11.
Angew Chem Int Ed Engl ; 61(20): e202117430, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35235232

RESUMEN

Some enzymes annotated as squalene synthase catalyze the prenylation of carbazole-3,4-quinone-containing substrates in bacterial secondary metabolism. Their reaction mechanisms remain unclear because of their low sequence similarity to well-characterized aromatic substrate prenyltransferases (PTs). We determined the crystal structures of the carbazole PTs, and these revealed that the overall structure is well superposed on those of squalene synthases. In contrast, the stacking interaction between the prenyl donor and acceptor substrates resembles those observed in aromatic substrate PTs. Structural and mutational analyses suggest that the Ile and Asp residues are essential for the hydrophobic and hydrophilic interactions with the carbazole-3,4-quinone moiety of the prenyl acceptor, respectively, and a deprotonation mechanism of an intermediary σ-complex involving a catalytic triad is proposed. Our results provide a structural basis for a new subclass of aromatic substrate PTs.


Asunto(s)
Productos Biológicos , Dimetilaliltranstransferasa , Carbazoles , Catálisis , Dimetilaliltranstransferasa/metabolismo , Farnesil Difosfato Farnesil Transferasa/metabolismo , Prenilación , Quinonas , Especificidad por Sustrato
12.
J Am Chem Soc ; 143(7): 2962-2969, 2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33576619

RESUMEN

Natural products containing an o-dialkylbenzene moiety exhibit a wide variety of bioactivities, including antibacterial, antifungal, antitumor, and antiangiogenic activities. However, the biosynthetic scheme of the o-dialkylbenzene moiety remains unclear. In this study, we identified the biosynthetic gene cluster (BGC) of compounds 1 and 2 in Streptomyces sp. SANK 60404, which contains a rare o-dialkylbenzene moiety, and successfully reconstituted the biosynthesis of 1 using 22 recombinant enzymes in vitro. Our study established a biosynthetic route for the o-tolyl group within the o-dialkylbenzene moiety, where the triene intermediate 3 loaded onto a unique acyl carrier protein (ACP) is elongated by a specific ketosynthase-chain length factor pair of a type II polyketide synthase system with the aid of a putative isomerase to be termed "electrocyclase" and a thioesterase-like enzyme in the BGC. The C2-elongated all-trans diketo-triene intermediate is subsequently isomerized to the 6Z configuration by the electrocyclase to allow intramolecular 6π-electrocyclization, followed by coenzyme FAD/FMN-dependent dehydrogenation. Bioinformatics analysis showed that the key genes are all conserved in BGCs of natural products containing an o-dialkylbenzene moiety, suggesting that the proposed biosynthetic scheme is a common strategy to form o-dialkylbenzenes in nature.


Asunto(s)
Benceno/química , Productos Biológicos/metabolismo , Sintasas Poliquetidas/metabolismo , Proteína Transportadora de Acilo/genética , Proteína Transportadora de Acilo/metabolismo , Antibacterianos/biosíntesis , Antibacterianos/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Productos Biológicos/química , Ciclización , Familia de Multigenes , Sintasas Poliquetidas/genética , Streptomyces/metabolismo
13.
Biosci Biotechnol Biochem ; 85(4): 874-881, 2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33580690

RESUMEN

In Corynebacterium glutamicum, pyruvate dehydrogenase (PDH) and 2-oxoglutarate dehydrogenase (ODH) form a unique hybrid complex in which CgE1p and CgE1o are associated with the CgE2-CgE3 subcomplex. We analyzed the role of a lysine acetylation site in the peripheral subunit-binding domain of CgE2 in PDH and ODH functions. Acetylation-mimic substitution at Lys391 of CgE2 severely reduced the interaction of CgE2 with CgE1p and CgE3, but not with CgE1o, indicating the critical role of this residue in the assembly of CgE1p and CgE3 into the complex. It also suggested that Lys391 acetylation inhibited the binding of CgE1p and CgE3 to CgE2, thereby affecting PDH and ODH activities. Interestingly, the CgE2-K391R variant strain showed increased l-glutamate production and reduced pyruvate accumulation. Kinetic analysis suggested that the increased affinity of the K391R variant toward pyruvate might be advantageous for l-glutamate production.


Asunto(s)
Corynebacterium glutamicum/metabolismo , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Lisina/metabolismo , Complejo Piruvato Deshidrogenasa/metabolismo , Acetilación , Cinética , Unión Proteica
14.
Acta Neurochir (Wien) ; 163(8): 2313-2318, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33745029

RESUMEN

Spinal cord herniation (SCH) is a rare condition associated with tethering of the spinal cord at the ventral dural defect. Idiopathic dorsal spinal cord herniation (IDSCH) is an extremely rare clinical entity. Here, we report the first case of IDSCH perforating the lamina in a patient with a history of ossification of the ligamentum flavum and diffuse idiopathic skeletal hyperostosis. Untethering of the spinal cord was performed by removing the surrounded ossified dura. Although urological symptoms and impaired proprioception remained, progressive neurological deterioration was prevented. Because this disease condition is extremely rare, it should be differentiated from ventral SCH.


Asunto(s)
Enfermedades de la Médula Espinal , Duramadre , Hernia/diagnóstico por imagen , Humanos , Ligamento Amarillo , Vértebras Torácicas
15.
Org Biomol Chem ; 18(27): 5137-5144, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32582897

RESUMEN

The 1-azabicyclo[3.1.0]hexane ring is a key moiety in natural products for biological activities against bacteria, fungi, and tumor through DNA alkylation. Ficellomycin is a dipeptide that consists of l-valine and a non-proteinogenic amino acid with the 1-azabicyclo[3.1.0]hexane ring structure. Although the biosynthetic gene cluster of ficellomycin has been identified, the biosynthetic pathway currently remains unclear. We herein report the final stage of ficellomycin biosynthesis involving ring modifications and successive dipeptide formation. After the ring is formed, the hydroxy group of the ring is converted into the guanidyl unit by three enzymes, which include an aminotransferase with a novel inter ω-ω amino-transferring activity. In the last step, the resulting 1-azabicyclo[3.1.0]hexane ring-containing amino acid is connected with l-valine by an amino acid ligase to yield ficellomycin. The present study revealed a new machinery that expands the structural and biological diversities of natural products.


Asunto(s)
Compuestos de Azabiciclo/química , Guanidina/química , Hexanos/química , Péptidos y Proteínas de Señalización Intercelular/química , Péptidos y Proteínas de Señalización Intercelular/farmacología , Péptidos y Proteínas de Señalización Intercelular/biosíntesis , Relación Estructura-Actividad
16.
J Bacteriol ; 201(14)2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31036724

RESUMEN

Glutamate dehydrogenase (GDH) from a thermophilic bacterium, Thermus thermophilus, is composed of two heterologous subunits, GdhA and GdhB. In the heterocomplex, GdhB acts as the catalytic subunit, whereas GdhA lacks enzymatic activity and acts as the regulatory subunit for activation by leucine. In the present study, we performed a pulldown assay using recombinant T. thermophilus, producing GdhA fused with a His tag at the N terminus, and found that TTC1249 (APRTh), which is annotated as adenine phosphoribosyltransferase but lacks the enzymatic activity, was copurified with GdhA. When GdhA, GdhB, and APRTh were coproduced in Escherichia coli cells, they were purified as a ternary complex. The ternary complex exhibited GDH activity that was activated by leucine, as observed for the GdhA-GdhB binary complex. Furthermore, AMP activated GDH activity of the ternary complex, whereas such activation was not observed for the GdhA-GdhB binary complex. This suggests that APRTh mediates the allosteric activation of GDH by AMP. The present study demonstrates the presence of complicated regulatory mechanisms of GDH mediated by multiple compounds to control the carbon-nitrogen balance in bacterial cells.IMPORTANCE GDH, which catalyzes the synthesis and degradation of glutamate using NAD(P)(H), is a widely distributed enzyme among all domains of life. Mammalian GDH is regulated allosterically by multiple metabolites, in which the antenna helix plays a key role to transmit the allosteric signals. In contrast, bacterial GDH was believed not to be regulated allosterically because it lacks the antenna helix. We previously reported that GDH from Thermus thermophilus (TtGDH), which is composed of two heterologous subunits, is activated by leucine. In the present study, we found that AMP activates TtGDH using a catalytically inactive APRTh as the sensory subunit. This suggests that T. thermophilus possesses a complicated regulatory mechanism of GDH to control carbon and nitrogen metabolism.


Asunto(s)
Adenina Fosforribosiltransferasa/metabolismo , Adenosina Monofosfato/metabolismo , Proteínas Bacterianas/metabolismo , Glutamato Deshidrogenasa/metabolismo , Leucina/metabolismo , Thermus thermophilus/enzimología , Adenina Fosforribosiltransferasa/genética , Proteínas Bacterianas/genética , Catálisis , Regulación Bacteriana de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Glutamato Deshidrogenasa/genética , Ácido Glutámico/metabolismo , Thermus thermophilus/genética
17.
J Biol Chem ; 293(10): 3625-3636, 2018 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-29352105

RESUMEN

Aminotransferases are pyridoxal 5'-phosphate-dependent enzymes that catalyze reversible transamination reactions between amino acids and α-keto acids, and are important for the cellular metabolism of nitrogen. Many bacterial and eukaryotic ω-aminotransferases that use l-ornithine (Orn), l-lysine (Lys), or γ-aminobutyrate (GABA) have been identified and characterized, but the corresponding enzymes from archaea are unknown. Here, we examined the activity and function of TK2101, a gene annotated as a GABA aminotransferase, from the hyperthermophilic archaeon Thermococcus kodakarensis We overexpressed the TK2101 gene in T. kodakarensis and purified and characterized the recombinant protein and found that it displays only low levels of GABA aminotransferase activity. Instead, we observed a relatively high ω-aminotransferase activity with l-Orn and l-Lys as amino donors. The most preferred amino acceptor was 2-oxoglutarate. To examine the physiological role of TK2101, we created a TK2101 gene-disruption strain (ΔTK2101), which was auxotrophic for proline. Growth comparison with the parent strain KU216 and the biochemical characteristics of the protein strongly suggested that TK2101 encodes an Orn aminotransferase involved in the biosynthesis of l-Pro. Phylogenetic comparisons of the TK2101 sequence with related sequences retrieved from the databases revealed the presence of several distinct protein groups, some of which having no experimentally studied member. We conclude that TK2101 is part of a novel group of Orn aminotransferases that are widely distributed at least in the genus Thermococcus, but perhaps also throughout the Archaea.


Asunto(s)
Proteínas Arqueales/metabolismo , Ornitina-Oxo-Ácido Transaminasa/metabolismo , Prolina/metabolismo , Thermococcus/enzimología , Secuencia de Aminoácidos , Proteínas Arqueales/química , Proteínas Arqueales/genética , Secuencia Conservada , Técnicas de Inactivación de Genes , Calor , Concentración de Iones de Hidrógeno , Ácidos Cetoglutáricos/metabolismo , Cinética , Lisina/metabolismo , Mutación , Ornitina/metabolismo , Ornitina-Oxo-Ácido Transaminasa/química , Ornitina-Oxo-Ácido Transaminasa/genética , Filogenia , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Thermococcus/crecimiento & desarrollo , Thermococcus/metabolismo
18.
J Am Chem Soc ; 141(36): 14152-14159, 2019 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-31150226

RESUMEN

Peptidyl nucleoside antibiotics (PNAs) are a diverse class of natural products with promising biomedical activities. These compounds have tripartite structures composed of a core saccharide, a nucleobase, and one or more amino acids. In particular, amipurimycin and the miharamycins are novel 2-aminopurinyl PNAs with complex nine-carbon core saccharides and include the unusual amino acids (-)-cispentacin and N5-hydroxyarginine, respectively. Despite their interesting structures and properties, these PNAs have heretofore eluded biochemical scrutiny. Herein is reported the discovery and initial characterization of the miharamycin gene cluster in Streptomyces miharaensis (mhr) and the amipurimycin gene cluster (amc) in Streptomyces novoguineensis and Streptomyces sp. SN-C1. The gene clusters were identified using a comparative genomics approach, and heterologous expression of the amc cluster as well as gene interruption experiments in the mhr cluster support their role in the biosynthesis of amipurimycin and the miharamycins, respectively. The mhr and amc biosynthetic gene clusters characterized encode enzymes typical of polyketide biosynthesis instead of enzymes commonly associated with PNA biosynthesis, which, along with labeled precursor feeding studies, implies that the core saccharides found in the miharamycins and amipurimycin are partially assembled as polyketides rather than derived solely from carbohydrates. Furthermore, in vitro analysis of Mhr20 and Amc18 established their roles as ATP-grasp ligases involved in the attachment of the pendant amino acids found in these PNAs, and Mhr24 was found to be an unusual hydroxylase involved in the biosynthesis of N5-hydroxyarginine. Finally, analysis of the amc cluster and feeding studies also led to the proposal of a biosynthetic pathway for (-)-cispentacin.


Asunto(s)
Antibacterianos/biosíntesis , N-Glicosil Hidrolasas/biosíntesis , Nucleósidos/biosíntesis , Purinas/biosíntesis , Antibacterianos/química , Vías Biosintéticas , Conformación Molecular , Familia de Multigenes , N-Glicosil Hidrolasas/química , N-Glicosil Hidrolasas/genética , Nucleósidos/química , Nucleósidos/genética , Purinas/química , Streptomyces/genética
19.
Microbiology (Reading) ; 165(1): 65-77, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30394869

RESUMEN

Nε-lysine acetylation and succinylation are ubiquitous post-translational modifications in eukaryotes and bacteria. In the present study, we showed a dynamic change in acetylation and succinylation of TufA, the translation elongation factor Tu, from Bacillus subtilis. Increased acetylation of TufA was observed during the exponential growth phase in LB and minimal glucose conditions, and its acetylation level decreased upon entering the stationary phase, while its succinylation increased during the late stationary phase. TufA was also succinylated during vegetative growth under minimal citrate or succinate conditions. Mutational analysis showed that triple succinylation mimic mutations at Lys306, Lys308 and Lys316 in domain-3 of TufA had a negative effect on B. subtilis growth, whereas the non-acylation mimic mutations at these three lysine residues did not. Consistent with the growth phenotypes, the triple succinylation mimic mutant showed 67 % decreased translation activity in vitro, suggesting a possibility that succinylation at the lysine residues in domain-3 decreases the translation activity. TufA, including Lys308, was non-enzymatically succinylated by physiological concentrations of succinyl-CoA. Lys42 in the G-domain was identified as the most frequently modified acetylation site, though its acetylation was likely dispensable for TufA translation activity and growth. Determination of the intracellular levels of acetylating substrates and TufA acetylation revealed that acetyl phosphate was responsible for acetylation at several lysine sites of TufA, but not for Lys42 acetylation. It was speculated that acetyl-CoA was likely responsible for Lys42 acetylation, though AcuA acetyltransferase was not involved. Zn2+-dependent AcuC and NAD+-dependent SrtN deacetylases were responsible for deacetylation of TufA, including Lys42. These findings suggest the potential regulatory roles of acetylation and succinylation in controlling TufA function and translation in response to nutrient environments in B. subtilis.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Lisina/metabolismo , Factor Tu de Elongación Peptídica/metabolismo , Ácido Succínico/metabolismo , Acetilación , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Acilcoenzima A/genética , Acilcoenzima A/metabolismo , Secuencias de Aminoácidos , Bacillus subtilis/genética , Bacillus subtilis/crecimiento & desarrollo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Factor Tu de Elongación Peptídica/química , Factor Tu de Elongación Peptídica/genética
20.
Extremophiles ; 23(4): 377-388, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30919057

RESUMEN

Protein lysine Nε-acetylation is one of the important factors regulating cellular metabolism. We performed a proteomic analysis to identify acetylated proteins in the extremely thermophilic bacterium, Thermus thermophilus HB27. A total of 335 unique acetylated lysine residues, including many metabolic enzymes and ribosomal proteins, were identified in 208 proteins. Enzymes involved in amino acid metabolism were the most abundant among acetylated metabolic proteins. 2-Isopropylmalate synthase (IPMS), which catalyzes the first step in leucine biosynthesis, was acetylated at four lysine residues. Acetylation-mimicking mutations at Lys332 markedly decreased IPMS activity in vitro, suggesting that Lys332, which is located in subdomain II, plays a regulatory role in IPMS activity. We also investigated the acetylation-deacetylation mechanism of IPMS and revealed that it was acetylated non-enzymatically by acetyl-CoA and deacetylated enzymatically by TT_C0104. The present results suggest that leucine biosynthesis is regulated by post-translational protein modifications, in addition to feedback inhibition/repression, and that metabolic enzymes are regulated by protein acetylation in T. thermophilus.


Asunto(s)
2-Isopropilmalato Sintasa/metabolismo , Proteínas Bacterianas/metabolismo , Procesamiento Proteico-Postraduccional , Thermus thermophilus/enzimología , 2-Isopropilmalato Sintasa/química , 2-Isopropilmalato Sintasa/genética , Acetilación , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Leucina/biosíntesis , Thermus thermophilus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA