Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Gynecol Oncol ; 184: 206-213, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38340646

RESUMEN

OBJECTIVES: Ovarian tumors in the pediatric population are rare. The incidence and frequency of subtypes differ between children and adults. Although not all tumors are aggressive, they may still lead to morbidity. The goal of this study was a comprehensive review of malignant ovarian tumors in children and adolescents diagnosed and registered in Sweden. METHODS: Individuals were identified through a search in the National Cancer Register, limited for ages 0-19, years 1970-2014. Stored tumor diagnostic material from regional biobanks was retrieved and reviewed. RESULTS: The study includes 345 individuals with ovarian tumors and 70.7% of them were between 15 and 19 years at time of diagnosis. No differences in incidence over time or geographic location were identified. The average follow-up time was 21.2 years and 5-year survival was 88.4%. Survival was similar in the different time periods, except for 1970-1979. Review was possible for 260 cases, resulting in 85 epithelial tumors, 121 GCTs, 47 SCSTs and 7 others. For age 0-4 years SCSTs dominated (85.7%), for 5-9- and 10-14-years GCTs dominated (70,8% and 75.0% respectively), and for age 15-19 years epithelial tumors dominated (43.8%). There was a strong agreement between review diagnosis and original diagnosis (Cohen's κ 0.944). Differentiating between entities within the sex cord-stromal group posed the biggest diagnostic challenge. CONCLUSIONS: Ovarian tumors in children and adolescents are rare and distinct from their adult counterparts regarding incidence and frequency. There was a strong concurrence between original and review diagnoses. The greatest diagnostic difficulty was subtyping of epithelial tumors and differentiating between tumors within the SCST group.


Asunto(s)
Neoplasias Ováricas , Humanos , Femenino , Adolescente , Neoplasias Ováricas/patología , Neoplasias Ováricas/epidemiología , Neoplasias Ováricas/mortalidad , Suecia/epidemiología , Lactante , Niño , Preescolar , Adulto Joven , Recién Nacido , Sistema de Registros , Incidencia , Inmunohistoquímica
2.
Int J Gynecol Pathol ; 43(1): 78-89, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37255476

RESUMEN

Granulosa-cell tumors (GCTs) are the most common type of malignant ovarian sex cord-stromal tumor (SCST). The histopathologic diagnosis of these tumors can be challenging. A recurrent somatic mutation of the forkhead box L2 (FOXL2) gene has been identified in adult GCT. In this retrospective single-center study of 44 SCST, a morphologic review together with analysis of FOXL2 C134W was evaluated in relation to tumor morphology. In addition, TERT promoter mutation testing was performed. Twelve of 36 cases got an altered diagnosis based on morphology alone. The overarching architectural growth pattern in 32/44 (72.7%) tumors was diffuse/solid with several tumors showing markedly heterogeneous architecture. In correlation to FOXL2 C134W mutation status, cytoplasmic color, and nuclear shape, differed between the FOXL2 C134W positive and FOXL2 C134 W negative groups, but these differences were not significant when comparing them separately. Nineteen of 44 cases underwent TERT promoter sequencing with a positive result in 3 cases; 2 adult GCTs and 1 cellular fibroma. Three patients developed a recurrence of which 2 were FOXL2 C134W positive adult GCTs and the third was an unclassified SCST. In conclusion, the morphologic and immunohistochemical diagnosis of different SCSTs is challenging and one cannot reliably identify FOXL2 mutation-positive tumors solely by morphologic features. Therefore, broad use of molecular analysis of the FOXL2 C134W mutation is suggested for SCSTs, and further studies are needed to evaluate the clinical outcome of these tumors as well as the diagnostic and prognostic implications of TERT promoter mutations.


Asunto(s)
Tumor de Células de la Granulosa , Neoplasias Ováricas , Tumores de los Cordones Sexuales y Estroma de las Gónadas , Adulto , Femenino , Humanos , Estudios Retrospectivos , Proteína Forkhead Box L2/genética , Tumores de los Cordones Sexuales y Estroma de las Gónadas/diagnóstico , Tumores de los Cordones Sexuales y Estroma de las Gónadas/genética , Tumores de los Cordones Sexuales y Estroma de las Gónadas/patología , Mutación , Tumor de Células de la Granulosa/diagnóstico , Tumor de Células de la Granulosa/genética , Tumor de Células de la Granulosa/patología , Neoplasias Ováricas/patología , Factores de Transcripción Forkhead/genética
3.
EMBO J ; 38(8)2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30842096

RESUMEN

Mitochondrial dynamics is important for life. At center stage for mitochondrial dynamics, the balance between mitochondrial fission and fusion is a set of dynamin-related GTPases that drive mitochondrial fission and fusion. Fission is executed by the GTPases Drp1 and Dyn2, whereas the GTPases Mfn1, Mfn2, and OPA1 promote fusion. Recruitment of Drp1 to mitochondria is a critical step in fission. In yeast, Fis1p recruits the Drp1 homolog Dnm1p to mitochondria through Mdv1p and Caf4p, but whether human Fis1 (hFis1) promotes fission through a similar mechanism as in yeast is not established. Here, we show that hFis1-mediated mitochondrial fragmentation occurs in the absence of Drp1 and Dyn2, suggesting that they are dispensable for hFis1 function. hFis1 instead binds to Mfn1, Mfn2, and OPA1 and inhibits their GTPase activity, thus blocking the fusion machinery. Consistent with this, disruption of the fusion machinery in Drp1-/- cells phenocopies the fragmentation phenotype induced by hFis1 overexpression. In sum, our data suggest a novel role for hFis1 as an inhibitor of the fusion machinery, revealing an important functional evolutionary divergence between yeast and mammalian Fis1 proteins.


Asunto(s)
Dinaminas/metabolismo , GTP Fosfohidrolasas/metabolismo , Proteínas de la Membrana/metabolismo , Dinámicas Mitocondriales , Proteínas Mitocondriales/metabolismo , Dinaminas/genética , GTP Fosfohidrolasas/genética , Células HeLa , Humanos , Proteínas de la Membrana/genética , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas Mitocondriales/genética
4.
J Transl Med ; 21(1): 342, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37221626

RESUMEN

The Swedish Childhood Tumor Biobank (BTB) is a nonprofit national infrastructure for collecting tissue samples and genomic data from pediatric patients diagnosed with central nervous system (CNS) and other solid tumors. The BTB is built on a multidisciplinary network established to provide the scientific community with standardized biospecimens and genomic data, thereby improving knowledge of the biology, treatment and outcome of childhood tumors. As of 2022, over 1100 fresh-frozen tumor samples are available for researchers. We present the workflow of the BTB from sample collection and processing to the generation of genomic data and services offered. To determine the research and clinical utility of the data, we performed bioinformatics analyses on next-generation sequencing (NGS) data obtained from a subset of 82 brain tumors and patient blood-derived DNA combined with methylation profiling to enhance the diagnostic accuracy and identified germline and somatic alterations with potential biological or clinical significance. The BTB procedures for collection, processing, sequencing, and bioinformatics deliver high-quality data. We observed that the findings could impact patient management by confirming or clarifying the diagnosis in 79 of the 82 tumors and detecting known or likely driver mutations in 68 of 79 patients. In addition to revealing known mutations in a broad spectrum of genes implicated in pediatric cancer, we discovered numerous alterations that may represent novel driver events and specific tumor entities. In summary, these examples reveal the power of NGS to identify a wide number of actionable gene alterations. Making the power of NGS available in healthcare is a challenging task requiring the integration of the work of clinical specialists and cancer biologists; this approach requires a dedicated infrastructure, as exemplified here by the BTB.


Asunto(s)
Bancos de Muestras Biológicas , Neoplasias Encefálicas , Humanos , Niño , Suecia , Sistema Nervioso Central , Genómica
5.
Acta Neuropathol ; 145(1): 49-69, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36437415

RESUMEN

Pediatric central nervous system (CNS) tumors represent the most common cause of cancer-related death in children aged 0-14 years. They differ from their adult counterparts, showing extensive clinical and molecular heterogeneity as well as a challenging histopathological spectrum that often impairs accurate diagnosis. Here, we use DNA methylation-based CNS tumor classification in combination with copy number, RNA-seq, and ChIP-seq analysis to characterize a newly identified CNS tumor type. In addition, we report histology, patient characteristics, and survival data in this tumor type. We describe a biologically distinct pediatric CNS tumor type (n = 31 cases) that is characterized by focal high-level amplification and resultant overexpression of either PLAGL1 or PLAGL2, and an absence of recurrent genetic alterations characteristic of other pediatric CNS tumor types. Both genes act as transcription factors for a regulatory subset of imprinted genes (IGs), components of the Wnt/ß-Catenin pathway, and the potential drug targets RET and CYP2W1, which are also specifically overexpressed in this tumor type. A derived PLAGL-specific gene expression signature indicates dysregulation of imprinting control and differentiation/development. These tumors occurred throughout the neuroaxis including the cerebral hemispheres, cerebellum, and brainstem, and were predominantly composed of primitive embryonal-like cells lacking robust expression of markers of glial or neuronal differentiation (e.g., GFAP, OLIG2, and synaptophysin). Tumors with PLAGL1 amplification were typically diagnosed during adolescence (median age 10.5 years), whereas those with PLAGL2 amplification were diagnosed during early childhood (median age 2 years). The 10-year overall survival was 66% for PLAGL1-amplified tumors, 25% for PLAGL2-amplified tumors, 18% for male patients, and 82% for female patients. In summary, we describe a new type of biologically distinct CNS tumor characterized by PLAGL1/2 amplification that occurs predominantly in infants and toddlers (PLAGL2) or adolescents (PLAGL1) which we consider best classified as a CNS embryonal tumor and which is associated with intermediate survival. The cell of origin and optimal treatment strategies remain to be defined.


Asunto(s)
Neoplasias del Sistema Nervioso Central , Tumores Neuroectodérmicos Primitivos , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Proteínas de Ciclo Celular/genética , Neoplasias del Sistema Nervioso Central/genética , Metilación de ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Tumores Neuroectodérmicos Primitivos/genética , Proteínas de Unión al ARN/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/genética , Vía de Señalización Wnt/genética
6.
Medicina (Kaunas) ; 59(7)2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37512060

RESUMEN

Background: Human cytomegalovirus (HCMV) has been detected in tissue samples from patients with glioblastoma but little is known about the systemic immunological response to HCMV in these patients. Objectives: To investigate the presence and clinical significance of HCMV antibodies levels in plasma samples obtained from patients with brain tumors. Materials and Methods: HCMV-specific IgG and IgM antibody levels were determined in 59 plasma samples collected from brain tumor patients included in a prospective study and in 114 healthy individuals. We examined if the levels of HCMV specific antibodies varied in patients with different brain tumor diagnoses compared to healthy individuals, and if antibody levels were predictive for survival time. Results: HCMV specific IgG antibodies were detected by ELISA in 80% and 89% of patients with GBM and astrocytoma grades II-III, respectively, in all samples (100%) from patients with secondary GBM and brain metastases, as well as in 80% of healthy donors (n = 114). All plasma samples were negative for HCMV-IgM. Patients with brain metastases who had higher plasma HCMV-IgG titers had longer survival times (p = 0.03). Conclusions: HCMV specific IgG titers were higher among all brain tumor patient groups compared with healthy donors, except for patients with secondary GBM. Higher HCMV specific IgG levels in patients with brain metastases but not in patients with primary brain tumors were associated with prolonged survival time.


Asunto(s)
Neoplasias Encefálicas , Infecciones por Citomegalovirus , Humanos , Citomegalovirus , Infecciones por Citomegalovirus/complicaciones , Estudios Prospectivos , Anticuerpos Antivirales , Inmunoglobulina G
7.
Proc Natl Acad Sci U S A ; 116(34): 16997-17006, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31375625

RESUMEN

Despite the discovery of the oxygen-sensitive regulation of HIFα by the von Hippel-Lindau (VHL) protein, the mechanisms underlying the complex genotype/phenotype correlations in VHL disease remain unknown. Some germline VHL mutations cause familial pheochromocytoma and encode proteins that preserve their ability to down-regulate HIFα. While type 1, 2A, and 2B VHL mutants are defective in regulating HIFα, type 2C mutants encode proteins that preserve their ability to down-regulate HIFα. Here, we identified an oxygen-sensitive function of VHL that is abolished by VHL type 2C mutations. We found that BIM-EL, a proapoptotic BH3-only protein, is hydroxylated by EglN3 and subsequently bound by VHL. VHL mutants fail to bind hydroxylated BIM-EL, regardless of whether they have the ability to bind hydroxylated HIFα or not. VHL binding inhibits BIM-EL phosphorylation by extracellular signal-related kinase (ERK) on serine 69. This causes BIM-EL to escape from proteasomal degradation, allowing it to enhance EglN3-induced apoptosis. BIM-EL was rapidly degraded in cells lacking wild-type VHL or in which EglN3 was inactivated genetically or by lack of oxygen, leading to enhanced cell survival and chemotherapy resistance. Combination therapy using ERK inhibitors, however, resensitizes VHL- and EglN3-deficient cells that are otherwise cisplatin-resistant.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales , Proteína 11 Similar a Bcl2/metabolismo , Resistencia a Antineoplásicos/genética , Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Mutación , Feocromocitoma , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo , Neoplasias de las Glándulas Suprarrenales/tratamiento farmacológico , Neoplasias de las Glándulas Suprarrenales/genética , Neoplasias de las Glándulas Suprarrenales/metabolismo , Neoplasias de las Glándulas Suprarrenales/patología , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Proteína 11 Similar a Bcl2/genética , Hipoxia de la Célula/efectos de los fármacos , Hipoxia de la Célula/genética , Cisplatino/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Hidroxilación/efectos de los fármacos , Hidroxilación/genética , Prolina Dioxigenasas del Factor Inducible por Hipoxia/genética , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/genética , Ratones , Ratones Noqueados , Células PC12 , Feocromocitoma/tratamiento farmacológico , Feocromocitoma/metabolismo , Feocromocitoma/patología , Proteolisis/efectos de los fármacos , Ratas , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética
8.
BMC Biol ; 19(1): 229, 2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34674699

RESUMEN

BACKGROUND: Mitochondrial dynamics is the result of a dynamic balance between fusion and fission events, which are driven via a set of mitochondria-shaping proteins. These proteins are generally considered to be binary components of either the fission or fusion machinery, but potential crosstalk between the fission and fusion machineries remains less explored. In the present work, we analyzed the roles of mitochondrial elongation factors 1 and 2 (MIEF1/2), core components of the fission machinery in mammals. RESULTS: We show that MIEFs (MIEF1/2), besides their action in the fission machinery, regulate mitochondrial fusion through direct interaction with the fusion proteins Mfn1 and Mfn2, suggesting that MIEFs participate in not only fission but also fusion. Elevated levels of MIEFs enhance mitochondrial fusion in an Mfn1/2- and OPA1-dependent but Drp1-independent manner. Moreover, mitochondrial localization and self-association of MIEFs are crucial for their fusion-promoting ability. In addition, we show that MIEF1/2 can competitively decrease the interaction of hFis1 with Mfn1 and Mfn2, alleviating hFis1-induced mitochondrial fragmentation and contributing to mitochondrial fusion. CONCLUSIONS: Our study suggests that MIEFs serve as a central hub that interacts with and regulates both the fission and fusion machineries, which uncovers a novel mechanism for balancing these opposing forces of mitochondrial dynamics in mammals.


Asunto(s)
Dinaminas , Dinámicas Mitocondriales , Animales , Mitocondrias/genética , Proteínas Mitocondriales/genética , Factores de Elongación de Péptidos
9.
J Biol Chem ; 294(46): 17262-17277, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31533986

RESUMEN

Recruitment of the GTPase dynamin-related protein 1 (Drp1) to mitochondria is a central step required for mitochondrial fission. Reversible Drp1 phosphorylation has been implicated in the regulation of this process, but whether Drp1 phosphorylation at Ser-637 determines its subcellular localization and fission activity remains to be fully elucidated. Here, using HEK 293T cells and immunofluorescence, immunoblotting, RNAi, subcellular fractionation, co-immunoprecipitation assays, and CRISPR/Cas9 genome editing, we show that Drp1 phosphorylated at Ser-637 (Drp1pS637) resides both in the cytosol and on mitochondria. We found that the receptors mitochondrial fission factor (Mff) and mitochondrial elongation factor 1/2 (MIEF1/2) interact with and recruit Drp1pS637 to mitochondria and that elevated Mff or MIEF levels promote Drp1pS637 accumulation on mitochondria. We also noted that protein kinase A (PKA), which mediates phosphorylation of Drp1 on Ser-637, is partially present on mitochondria and interacts with both MIEFs and Mff. PKA knockdown did not affect the Drp1-Mff interaction, but slightly enhanced the interaction between Drp1 and MIEFs. In Drp1-deficient HEK 293T cells, both phosphomimetic Drp1-S637D and phospho-deficient Drp1-S637A variants, like wild-type Drp1, located to the cytosol and to mitochondria and rescued a Drp1 deficiency-induced mitochondrial hyperfusion phenotype. However, Drp1-S637D was less efficient than Drp1-WT and Drp1-S637A in inducing mitochondrial fission. In conclusion, the Ser-637 phosphorylation status in Drp1 is not a determinant that controls Drp1 recruitment to mitochondria.


Asunto(s)
Dinaminas/genética , Proteínas de la Membrana/genética , Mitocondrias/genética , Proteínas Mitocondriales/genética , Factores de Elongación de Péptidos/genética , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Citosol/metabolismo , Dinaminas/metabolismo , Células HEK293 , Humanos , Mitocondrias/metabolismo , Dinámicas Mitocondriales/genética , Fosforilación/genética , Serina/química
10.
Glia ; 68(2): 316-327, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31509308

RESUMEN

Glioblastoma (GBM) is a deadly disease with a need for deeper understanding and new therapeutic approaches. The microenvironment of glioblastoma has previously been shown to guide glioblastoma progression. In this study, astrocytes were investigated with regard to their effect on glioblastoma proliferation through correlative analyses of clinical samples and experimental in vitro and in vivo studies. Co-culture techniques were used to investigate the GBM growth enhancing potential of astrocytes. Cell sorting and RNA sequencing were used to generate a GBM-associated astrocyte signature and to investigate astrocyte-induced GBM genes. A NOD scid GBM mouse model was used for in vivo studies. A gene signature reflecting GBM-activated astrocytes was associated with poor prognosis in the TCGA GBM dataset. Two genes, periostin and serglycin, induced in GBM cells upon exposure to astrocytes were expressed at higher levels in cases with high "astrocyte signature score". Astrocytes were shown to enhance glioblastoma cell growth in cell lines and in a patient-derived culture, in a manner dependent on cell-cell contact and involving increased cell proliferation. Furthermore, co-injection of astrocytes with glioblastoma cells reduced survival in an orthotopic GBM model in NOD scid mice. In conclusion, this study suggests that astrocytes contribute to glioblastoma growth and implies this crosstalk as a candidate target for novel therapies.


Asunto(s)
Astrocitos/metabolismo , Neoplasias Encefálicas/metabolismo , Movimiento Celular/fisiología , Glioblastoma/metabolismo , Animales , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Proliferación Celular/fisiología , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Glioblastoma/patología , Glioma/metabolismo , Humanos , Ratones Endogámicos NOD
11.
Glia ; 68(5): 979-988, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31769546

RESUMEN

The microenvironment and architecture of peritumoral tissue have been suggested to affect permissiveness for infiltration of malignant cells. Astrocytes constitute a heterogeneous population of cells and have been linked to proliferation, migration, and drug sensitivity of glioblastoma (GBM) cells. Through double-immunohistochemical staining for platelet-derived growth factor receptor α (PDGFRα) and glial fibrillary acidic protein (GFAP), this study explored the intercase variability among 45 human GBM samples regarding density of GFAP+ peritumoral astrocytes and a subset of GFAP+ peritumoral astrocyte-like cells also expressing PDGFRα. Large intercase variability regarding the total peritumoral astrocyte density and the density of PDGFRα+/GFAP+ peritumoral astrocyte-like cells was detected. DNA fluorescence in situ hybridization analyses for commonly altered genetic tumor markers supported the interpretation that these cells represented a genetically unaffected host cell subset referred to as PDGFRα+/GFAP+ peritumoral astrocytes. The presence of PDGFRα+/GFAP+ peritumoral astrocytes was significantly positively correlated to older patient age and peritumoral astrocyte density, but not to other established prognostic factors. Notably, presence of PDGFRα+/GFAP+ peritumoral astrocytes, but not peritumoral astrocyte density, was associated with significantly shorter patient overall survival. The prognostic association of PDGFRα+/GFAP+ peritumoral astrocytes was confirmed in multivariable analyses. This exploratory study thus demonstrates previously unrecognized intercase variability and prognostic significance of peritumoral abundance of a novel PDGFRα+ subset of GFAP+ astrocytes. Findings suggest clinically relevant roles of the microenvironment of peritumoral GBM tissue and encourage further characterization of the novel astrocyte subset with regard to origin, function, and potential as biomarker and drug target.


Asunto(s)
Astrocitos/metabolismo , Neoplasias Encefálicas/mortalidad , Proteína Ácida Fibrilar de la Glía/metabolismo , Glioblastoma/mortalidad , Receptores del Factor de Crecimiento Derivado de Plaquetas/metabolismo , Microambiente Tumoral/fisiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Niño , Femenino , Proteína Ácida Fibrilar de la Glía/genética , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Hibridación Fluorescente in Situ , Masculino , Persona de Mediana Edad , Pronóstico , Receptores del Factor de Crecimiento Derivado de Plaquetas/genética , Tasa de Supervivencia , Adulto Joven
12.
Hum Reprod ; 33(10): 1924-1938, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30020448

RESUMEN

STUDY QUESTION: Is there molecular evidence for a link between endometriosis and endometriosis-associated ovarian cancers (EAOC)? STUDY ANSWER: We identified aberrant gene expression signatures associated with malignant transformation in a small subgroup of women with ovarian endometriosis. WHAT IS KNOWN ALREADY: Epidemiological studies have shown an increased risk of EAOC in women with ovarian endometriosis. However, the cellular and molecular changes leading to EAOC are largely unexplored. STUDY DESIGN, SIZE, DURATION: CD73+CD90+CD105+ multipotent stem cells/progenitors (SC cohort) were isolated from endometrium (n = 18) and endometrioma (n = 11) of endometriosis patients as well as from the endometrium of healthy women (n = 14). Extensive phenotypic and functional analyses were performed in vitro on expanded multipotent stem cells/progenitors to confirm their altered characteristics. Aberrant gene signatures were also validated in paired-endometrium and -endometrioma tissue samples from another cohort (Tissue cohort, n = 19) of endometriosis patients. PARTICIPANTS/MATERIALS, SETTINGS, METHODS: Paired-endometrial and -endometriotic biopsies were obtained from women with endometriosis (ASRM stage III-IV) undergoing laparoscopic surgery. Control endometria were obtained from healthy volunteers. Isolated CD73+CD90+CD105+ SC were evaluated for the presence of known endometrial surface markers, colony forming efficiency, multi-lineage differentiation, cell cycle distribution and 3D-spheroid formation capacity. Targeted RT-PCR arrays, along with hierarchical and multivariate clustering tools, were used to determine both intergroup and intragroup gene expression variability for stem cell and cancer-associated markers, in both SC+ and tissue cohorts. MAIN RESULTS AND THE ROLE OF CHANCE: Isolated and expanded SC+ from both control and patient groups showed significantly higher surface expression of W5C5+, clonal expansion and 3D-spheroid formation capacity (P < 0.05) compared with SC-. The SC+ cells also undergo mesenchymal lineage differentiation, unlike SC-. Gene expression from paired-endometriosis samples showed significant downregulation of PTEN, ARID1A and TNFα (P < 0.05) in endometrioma compared with paired-endometrium SC+ samples. Hierarchical and multivariate clustering from both SC+ and tissue cohorts together identified 4 out of 30 endometrioma samples with aberrant expression of stem cell and cancer-associated genes, such as KIT, HIF2α and E-cadherin, altered expression ratio of ER-ß/ER-α and downregulation of tumour suppressor genes (PTEN and ARID1A). Thus, we speculate that above changes may be potentially relevant to the development of EAOC. LARGE-SCALE DATA: N/A. LIMITATIONS, REASON FOR CAUTION: As the reported frequency of EAOC is very low, we did not have access to those samples in our study. Moreover, by adopting a targeted gene array approach, we might have missed several other potentially-relevant genes associated with EAOC pathogenesis. The above panel of markers should be further validated in archived tissue samples from women with endometriosis who later in life developed EAOC. WIDER IMPLICATIONS OF THE FINDINGS: Knowledge gained from this study, with further confirmation on EAOC cases, may help in developing screening methods to identify women with increased risk of EAOC. STUDY FUNDING/COMPETING INTEREST(S): The study is funded by the Swedish Research Council (2012-2844), a joint grant from Stockholm County and Karolinska Institutet (ALF), RGD network at Karolinska Institutet, Karolinska Institutet for doctoral education (KID), Estonian Ministry of Education and Research (IUT34-16), Enterprise Estonia (EU48695), Horizon 2020 innovation program (WIDENLIFE, 692065), European Union's FP7 Marie Curie Industry-Academia Partnerships and Pathways funding (IAPP, SARM, EU324509) and MSCA-RISE-2015 project MOMENDO (691058). All authors have no competing interest.


Asunto(s)
Regulación hacia Abajo , Endometriosis/genética , Endometrio/metabolismo , Neoplasias Ováricas/genética , Adulto , Biomarcadores de Tumor , Estudios de Casos y Controles , Ciclo Celular , Endometriosis/complicaciones , Endometrio/patología , Femenino , Humanos , Neoplasias Ováricas/etiología , Receptores de Péptidos/genética , Receptores de Factores de Crecimiento Transformadores beta/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Madre/metabolismo
14.
J Biol Chem ; 289(50): 34601-19, 2014 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-25349213

RESUMEN

Nucleoli are prominent nuclear structures assembled and organized around actively transcribed ribosomal DNA (rDNA). The nucleolus has emerged as a platform for the organization of chromatin enriched for repressive histone modifications associated with repetitive DNA. NPM1 is a nucleolar protein required for the maintenance of genome stability. However, the role of NPM1 in nucleolar chromatin dynamics and ribosome biogenesis remains unclear. We found that normal fibroblasts and cancer cells depleted of NPM1 displayed deformed nucleoli and a striking rearrangement of perinucleolar heterochromatin, as identified by immunofluorescence staining of trimethylated H3K9, trimethylated H3K27, and heterochromatin protein 1γ (HP1γ/CBX3). By co-immunoprecipitation we found NPM1 associated with HP1γ and core and linker histones. Moreover, NPM1 was required for efficient tethering of HP1γ-enriched chromatin to the nucleolus. We next tested whether the alterations in perinucleolar heterochromatin architecture correlated with a difference in the regulation of rDNA. U1242MG glioma cells depleted of NPM1 presented with altered silver staining of nucleolar organizer regions, coupled to a modest decrease in H3K9 di- and trimethylation at the rDNA promoter. rDNA transcription and cell proliferation were sustained in these cells, indicating that altered organization of heterochromatin was not secondary to inhibition of rDNA transcription. Furthermore, knockdown of DNA methyltransferase DNMT3A markedly enhanced rDNA transcription in NPM1-depleted U1242MG cells. In summary, this study highlights a function of NPM1 in the spatial organization of nucleolus-associated heterochromatin.


Asunto(s)
Nucléolo Celular/metabolismo , Ensamble y Desensamble de Cromatina , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN Ribosómico/genética , Heterocromatina/genética , Proteínas Nucleares/metabolismo , Transcripción Genética , Animales , Línea Celular Tumoral , Nucléolo Celular/genética , Proteínas Cromosómicas no Histona/metabolismo , ADN (Citosina-5-)-Metiltransferasas/deficiencia , ADN (Citosina-5-)-Metiltransferasas/genética , ADN Metiltransferasa 3A , Diploidia , Fibroblastos/citología , Fibroblastos/metabolismo , Técnicas de Silenciamiento del Gen , Silenciador del Gen , Histonas/metabolismo , Humanos , Espacio Intracelular/metabolismo , Ratones , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética , Nucleofosmina , Regiones Promotoras Genéticas/genética , Proteína p53 Supresora de Tumor/metabolismo
15.
EMBO J ; 30(14): 2762-78, 2011 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-21701560

RESUMEN

Mitochondrial morphology is controlled by two opposing processes: fusion and fission. Drp1 (dynamin-related protein 1) and hFis1 are two key players of mitochondrial fission, but how Drp1 is recruited to mitochondria and how Drp1-mediated mitochondrial fission is regulated in mammals is poorly understood. Here, we identify the vertebrate-specific protein MIEF1 (mitochondrial elongation factor 1; independently identified as MiD51), which is anchored to the outer mitochondrial membrane. Elevated MIEF1 levels induce extensive mitochondrial fusion, whereas depletion of MIEF1 causes mitochondrial fragmentation. MIEF1 interacts with and recruits Drp1 to mitochondria in a manner independent of hFis1, Mff (mitochondrial fission factor) and Mfn2 (mitofusin 2), but inhibits Drp1 activity, thus executing a negative effect on mitochondrial fission. MIEF1 also interacts with hFis1 and elevated hFis1 levels partially reverse the MIEF1-induced fusion phenotype. In addition to inhibiting Drp1, MIEF1 also actively promotes fusion, but in a manner distinct from mitofusins. In conclusion, our findings uncover a novel mechanism which controls the mitochondrial fusion-fission machinery in vertebrates. As MIEF1 is vertebrate-specific, these data also reveal important differences between yeast and vertebrates in the regulation of mitochondrial dynamics.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Fusión de Membrana , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Factores de Elongación de Péptidos/metabolismo , Apoptosis , Western Blotting , Reactivos de Enlaces Cruzados , Citoplasma/metabolismo , Dinaminas , Técnica del Anticuerpo Fluorescente , GTP Fosfohidrolasas/genética , Glioma/genética , Glioma/metabolismo , Células HeLa , Humanos , Técnicas para Inmunoenzimas , Inmunoprecipitación , Proteínas de la Membrana/genética , Proteínas Asociadas a Microtúbulos/genética , Proteínas Mitocondriales/antagonistas & inhibidores , Proteínas Mitocondriales/genética , Neuroblastoma/genética , Neuroblastoma/metabolismo , Factores de Elongación de Péptidos/antagonistas & inhibidores , Factores de Elongación de Péptidos/genética , Unión Proteica , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Fracciones Subcelulares , Células Tumorales Cultivadas
16.
Int J Cancer ; 134(5): 1123-31, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24037901

RESUMEN

Recent studies suggest that the regulatory networks controlling the functions of stem cells during development may be abnormally active in human cancers. An embryonic stem cell (ESC) gene signature was found to correlate with a more undifferentiated phenotype of several human cancer types including gliomas, and associated with poor prognosis in breast cancer. In the present study, we used tissue microarrays of 80 low-grade (WHO Grade II) and 98 high-grade human gliomas (WHO Grades III and IV) to investigate the presence of the ESC-related proteins Nanog, Klf4, Oct4, Sox2 and c-Myc by immunohistochemistry. While similar patterns of co-expressed proteins between low- and high-grade gliomas were present, we found up-regulated protein levels of Nanog, Klf4, Oct4 and Sox2 in high-grade gliomas. Survival analysis by Kaplan-Meier analysis revealed a significant shorter survival in the subgroups of low-grade astrocytomas (n = 42) with high levels of Nanog protein (p = 0.0067) and of Klf4 protein (p = 0.0368), in high-grade astrocytomas (n = 85) with high levels of Nanog (p = 0.0042), Klf4 (p = 0.0447), and c-Myc (p = 0.0078) and in glioblastomas only (n = 71) with high levels of Nanog (p = 0.0422) and of c-Myc (p = 0.0256). In the multivariate model, Nanog was identified as an independent prognostic factor in the subgroups of low-grade astrocytomas (p = 0.0039), high-grade astrocytomas (p = 0.0124) and glioblastomas only (p = 0.0544), together with established clinical variables in these tumors. These findings provide further evidence for the joint regulatory pathways of ESC-related proteins in gliomas and identify Nanog as one of the key players in determining clinical outcome of human astrocytomas.


Asunto(s)
Astrocitoma/química , Neoplasias Encefálicas/química , Células Madre Embrionarias/química , Proteínas de Homeodominio/análisis , Adulto , Anciano , Anciano de 80 o más Años , Astrocitoma/mortalidad , Neoplasias Encefálicas/mortalidad , Femenino , Humanos , Inmunohistoquímica , Isocitrato Deshidrogenasa/genética , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/análisis , Masculino , Persona de Mediana Edad , Proteína Homeótica Nanog , Proteínas Proto-Oncogénicas c-myc/análisis , Análisis de Matrices Tisulares
17.
Exp Cell Res ; 319(18): 2893-904, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23880462

RESUMEN

Mitochondria are dynamic organelles whose morphology is regulated by a complex balance of fission and fusion processes, and we still know relatively little about how mitochondrial dynamics is regulated. MIEF1 (also called MiD51) has recently been characterized as a key regulator of mitochondrial dynamics and in this report we explore the functions of its paralog MIEF2 (also called MiD49), to learn to what extent MIEF2 is functionally distinct from MIEF1. We show that MIEF1 and MIEF2 have many functions in common. Both are anchored in the mitochondrial outer membrane, recruit Drp1 from the cytoplasm to the mitochondrial surface and cause mitochondrial fusion, and MIEF2, like MIEF1, can interact with Drp1 and hFis1. MIEF1 and MIEF2, however, also differ in certain aspects. MIEF1 and MIEF2 are differentially expressed in human tissues during development. When overexpressed, MIEF2 exerts a stronger fusion-promoting effect than MIEF1, and in line with this, hFis1 and Mff can only partially revert the MIEF2-induced fusion phenotype, whereas MIEF1-induced fusion is reverted to a larger extent by hFis1 and Mff. MIEF2 forms high molecular weight oligomers, while MIEF1 is largely present as a dimer. Furthermore, MIEF1 and MIEF2 use distinct domains for oligomerization: in MIEF1, the region from amino acid residues 109-154 is required, whereas oligomerization of MIEF2 depends on amino acid residues 1 to 49, i.e. the N-terminal end. We also show that oligomerization of MIEF1 is not required for its mitochondrial localization and interaction with Drp1. In conclusion, our data suggest that the mitochondrial regulators MIEF1 and MIEF2 exert partially distinct functions in mitochondrial dynamics.


Asunto(s)
Mitocondrias/genética , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Proteínas Mitocondriales/metabolismo , Factores de Elongación de Péptidos/metabolismo , Western Blotting , Dinaminas , Técnica del Anticuerpo Fluorescente , GTP Fosfohidrolasas/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Células MCF-7 , Proteínas de la Membrana/metabolismo , Microscopía Confocal , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Mitocondriales/genética , Factores de Elongación de Péptidos/genética , Unión Proteica , Reacción en Cadena en Tiempo Real de la Polimerasa
18.
Cell Mol Life Sci ; 70(6): 951-76, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22806564

RESUMEN

In eukaryotic cells, the shape of mitochondria can be tuned to various physiological conditions by a balance of fusion and fission processes termed mitochondrial dynamics. Mitochondrial dynamics controls not only the morphology but also the function of mitochondria, and therefore is crucial in many aspects of a cell's life. Consequently, dysfunction of mitochondrial dynamics has been implicated in a variety of human diseases including cancer. Several proteins important for mitochondrial fusion and fission have been discovered over the past decade. However, there is emerging evidence that there are as yet unidentified proteins important for these processes and that the fusion/fission machinery is not completely conserved between yeast and vertebrates. The recent characterization of several mammalian proteins important for the process that were not conserved in yeast, may indicate that the molecular mechanisms regulating and controlling the morphology and function of mitochondria are more elaborate and complex in vertebrates. This difference could possibly be a consequence of different needs in the different cell types of multicellular organisms. Here, we review recent advances in the field of mitochondrial dynamics. We highlight and discuss the mechanisms regulating recruitment of cytosolic Drp1 to the mitochondrial outer membrane by Fis1, Mff, and MIEF1 in mammals and the divergences in regulation of mitochondrial dynamics between yeast and vertebrates.


Asunto(s)
Evolución Biológica , Proteínas Asociadas a Microtúbulos/metabolismo , Dinámicas Mitocondriales/fisiología , Modelos Biológicos , Saccharomyces cerevisiae/fisiología , Vertebrados/fisiología , Animales , Línea Celular , Dinaminas , GTP Fosfohidrolasas/fisiología , Humanos , Proteínas Asociadas a Microtúbulos/fisiología , Proteínas Mitocondriales/fisiología , Especificidad de la Especie
19.
Cancer Metastasis Rev ; 31(3-4): 793-805, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22733308

RESUMEN

The homeobox gene PROX1 is critical for organ development during embryogenesis. The Drosophila homologue, known as prospero has been shown to act as a tumor suppressor by controlling asymmetric cell division of neuroblasts. Likewise, alterations in PROX1 expression and function are associated with a number of human cancers including hematological malignancies, carcinomas of the pancreas, liver and the biliary system, sporadic breast cancer, Kaposiform hemangioendothelioma, colon cancer, and brain tumors. PROX1 is involved in cancer development and progression and has been ascribed both tumor suppressive and oncogenic properties in a variety of different cancer types. However, the exact mechanisms through which PROX1 regulates proliferation, migration, and invasion of cancer cells are by large unknown. This review provides an update on the role of PROX1 in organ development and on its emerging functions in cancer, with special emphasis on the central nervous system and glial brain tumors.


Asunto(s)
Desarrollo Embrionario , Proteínas de Homeodominio/fisiología , Neoplasias/etiología , Proteínas Supresoras de Tumor/fisiología , Secuencia de Aminoácidos , Animales , Proteínas de Drosophila/fisiología , Ojo/embriología , Proteínas de Homeodominio/química , Humanos , Hígado/embriología , Datos de Secuencia Molecular , Metástasis de la Neoplasia , Proteínas del Tejido Nervioso/fisiología , Proteínas Nucleares/fisiología , Factores de Transcripción/fisiología , Proteínas Supresoras de Tumor/química
20.
Biochem Biophys Res Commun ; 439(2): 203-8, 2013 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-23988446

RESUMEN

Epithelial cell adhesion molecule (EpCAM) is an epithelial and cancer cell "marker" and there is a cumulative and growing evidence of its signaling role. Its importance has been recognized as part of the breast cancer stem cell phenotype, the tumorigenic breast cancer stem cell is EpCAM(+). In spite of its complex functions in normal cell development and cancer, relatively little is known about EpCAM-interacting proteins. We used breast cancer cell lines and performed EpCAM co-immunoprecipitation followed by mass spectrometry in search for novel potentially interacting proteins. The endoplasmic reticulum aminopeptidase 2 (ERAP2) was found to co-precipitate with EpCAM and to co-localize in the cytoplasm/ER and the plasma membrane. ERAP2 is a proteolytic enzyme set in the endoplasmic reticulum (ER) where it plays a central role in the trimming of peptides for presentation by MHC class I molecules. Expression of EpCAM and ERAP2 in vitro in the presence of dog pancreas rough microsomes (ER vesicles) confirmed N-linked glycosylation, processing in ER and the size of EpCAM. The association between ERAP2 and EpCAM is a unique and novel finding that provides new ideas on EpCAM processing and on how antigen presentation may be regulated in cancer.


Asunto(s)
Aminopeptidasas/metabolismo , Antígenos de Neoplasias/metabolismo , Neoplasias de la Mama/metabolismo , Mama/patología , Moléculas de Adhesión Celular/metabolismo , Aminopeptidasas/análisis , Animales , Antígenos de Neoplasias/análisis , Mama/metabolismo , Neoplasias de la Mama/patología , Moléculas de Adhesión Celular/análisis , Línea Celular Tumoral , Perros , Molécula de Adhesión Celular Epitelial , Femenino , Glicosilación , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA