Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(3)2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38338964

RESUMEN

In an increasingly aging society, there is a growing demand for the development of technology related to tissue regeneration. It involves the development of the appropriate biomaterials whose properties will allow the desired biological response to be obtained. Bioactivity is strongly affected by the proper selection of active ingredients. The aim of this study was to produce bioactive hydrogel materials based on hyaluronic acid and collagen modified by the addition of placenta. These materials were intended for use as dressings, and their physicochemical properties were investigated under simulated biological environmental conditions. The materials were incubated in vitro in different fluids simulating the environment of the human body (e.g., simulated body fluid) and then stored at a temperature close to body temperature. Using an FT-IR spectrophotometer, the functional groups present in the composites were identified. The materials with the added placenta showed an increase in the swelling factor of more than 300%. The results obtained confirmed the potential of using this material as an absorbent dressing. This was indicated by pH and conductometric measurements, sorption, degradation, and surface analysis under an optical microscope. The results of the in vitro biological evaluation confirmed the cytosafety of the tested biomaterials. The tested composites activate monocytes, which may indicate their beneficial properties in the first phases of wound healing. The material proved to be nontoxic and has potential for medical use.


Asunto(s)
Ácido Hialurónico , Hidrogeles , Humanos , Animales , Ovinos , Ácido Hialurónico/farmacología , Ácido Hialurónico/química , Hidrogeles/farmacología , Hidrogeles/química , Espectroscopía Infrarroja por Transformada de Fourier , Cicatrización de Heridas , Colágeno/farmacología , Colágeno/química , Materiales Biocompatibles/farmacología
2.
Materials (Basel) ; 17(10)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38793317

RESUMEN

The search for the ideal metallic material for an implant is still a difficult challenge for scientists due to the phenomenon of corrosion and the consequent disruption of the implant structure. Prevention is the application of coatings that protect the implant, activate the tissues for faster regeneration, and also prevent inflammation through antibacterial and antiviral effects. The present study focuses on the selection of components for a Ti-6Al-4V alloy coating. These days, researchers are taking an intense interest in extracts of natural origin. It was decided to take a look at Sideritis raeseri, which contains vitamins and valuable elements and is rich in polyphenols, as well as antioxidants. The composition of coatings based on a PEG polymer reinforced with brushite and the S. raeseri extract with the proteins L-carnosine, fibroin, or sericin was developed. The samples were subjected to detailed physiochemical analysis, including potentiometry and electrical conductivity analysis, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), X-ray diffraction (XRD) analysis, and UV-VIS spectroscopy. The study demonstrated that polyphenols were successfully released from the coatings during incubation in vitro. The osteointegration process can be supported by a number of factors, such as the release of polyphenols from implant coatings to prevent bacterial, viral, and fungal infections. Subjecting the samples to 14 days of incubation demonstrated their interactions with the incubation fluids, an ion exchange between the medium and the materials. An analysis of the surface morphology exhibited the presence of brushite crystals and their increased number after incubation, indicating the bioactivity of the formed coatings.

3.
Materials (Basel) ; 16(19)2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37834568

RESUMEN

Naturally occurring hydroxyapatite (HA) is the mineral phase of bone tissue. It is characterized by its bioactivity toward stimulating bone cells to proliferate and thus form new apatite layers. For this reason, it is a material commonly used in implantology for filling defects or covering implants (such as endoprostheses). There are several methods to obtain synthetic HA, and by controlling parameters such as temperature, pressure or the drying process, physicochemical parameters of the final powder can be affected. In the present study, HA was obtained by wet precipitation technique and subjected to two different drying methods, determining whether this parameter significantly affects the properties of the final material obtained. Analyzed Fourier-transform infrared spectroscopy (FT-IR) confirmed the presence of functional groups typical for HA. X-ray diffraction analysis (XRD) demonstrated that the materials are partially amorphous; however, the only phase was identified in HA. Scanning electron microscopy (SEM) was used to evaluate the surface morphology and the density, and average grain diameter was measured. Furthermore, HA powders were subjected to modification with the antibiotic clindamycin to determine the potential for use as a carrier for the active substance. The release rate of the drug was determined by high-performance liquid chromatography (HPLC). The differences in the characteristics of the powders were relatively small; however, they affected the rate of drug release from the material as well as the shape of the grains. The method of drying the powders was shown to affect the shape of the grains, as well as the porosity of the sinters prepared from it. A higher amount of clindamycin released into PBS was observed in material with more pores. The materials have demonstrated the potential to be used as a carrier for the active substance; however, further biological, as well as physicochemical, analysis is required.

4.
Materials (Basel) ; 17(1)2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38203913

RESUMEN

In recent years, significant developments have taken place in scientific fields such as tissue and materials engineering, which allow for the development of new, intelligent biomaterials. An example of such biomaterials is drug delivery systems that release the active substance directly at the site where the therapeutic effect is required. In this research, polymeric materials and ceramic-polymer composites were developed as carriers for the antibiotic clindamycin. The preparation and characterization of biomaterials based on hyaluronic acid, collagen, and nano brushite obtained using the photocrosslinking technique under UV (ultraviolet) light are described. Physical and chemical analyses of the materials obtained were carried out using Fourier transform infrared spectroscopy (FT-IR) and optical microscopy. The sorption capacities were determined and subjected to in vitro incubation in simulated biological environments such as Ringer's solution, simulated body fluid (SBF), phosphate-buffered saline (PBS), and distilled water. The antibiotic release rate was also measured. The study confirmed higher swelling capacity for materials with no addition of a ceramic phase, thus it can be concluded that brushite inhibits the penetration of the liquid medium into the interior of the samples, leading to faster absorption of the liquid medium. In addition, incubation tests confirmed preliminary biocompatibility. No drastic changes in pH values were observed, which suggests that the materials are stable under these conditions. The release rate of the antibiotic from the biomaterial into the incubation medium was determined using high-pressure liquid chromatography (HPLC). The concentration of the antibiotic in the incubation fluid increased steadily following a 14-day incubation in PBS, indicating continuous antibiotic release. Based on the results, it can be concluded that the developed polymeric material demonstrates potential for use as a carrier for the active substance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA