RESUMEN
PURPOSE: STAT1 gain-of-function (GOF) and dominant-negative (DN) STAT3 syndromes share clinical manifestations including infectious and inflammatory manifestations. Targeted treatment with Janus-kinase (JAK) inhibitors shows promising results in treating STAT1 GOF-associated symptoms while management of DN STAT3 patients has been largely supportive. We here assessed the impact of ruxolitinib on the JAK-STAT1/3 pathway in DN STAT3 patients' cells. METHODS: Using flow cytometry, immunoblot, qPCR, and ELISA techniques, we examined the levels of basal STAT1 and phosphorylated STAT1 (pSTAT1) of cells obtained from DN STAT3, STAT1 GOF patients, and healthy donors following stimulation with type I/II interferons (IFNs) or interleukin (IL)-6. We also describe the impact of ruxolitinib on cytokine-induced STAT1 signaling in these patients. RESULTS: DN STAT3 and STAT1 GOF resulted in a similar phenotype characterized by increased STAT1 and pSTAT1 levels in response to IFNα (CD3+ cells) and IFNγ (CD14+ monocytes). STAT1-downstream gene expression and C-X-C motif chemokine 10 secretion were higher in most DN STAT3 patients upon stimulation compared to healthy controls. Ex vivo treatment with the JAK1/2-inhibitor ruxolitinib reduced cytokine responsiveness and normalized STAT1 phosphorylation in DN STAT3 and STAT1 GOF patient' cells. In addition, ex vivo treatment was effective in modulating STAT1 downstream signaling in DN STAT3 patients. CONCLUSION: In the absence of effective targeted treatment options for AD-HIES at present, modulation of the JAK/STAT1 pathway with JAK inhibitors may be further explored particularly in those AD-HIES patients with autoimmune and/or autoinflammatory manifestations.
Asunto(s)
Inhibidores de las Cinasas Janus , Quimiocinas/genética , Quimiocinas/metabolismo , Citocinas/metabolismo , Humanos , Interferones/metabolismo , Interleucina-6/metabolismo , Inhibidores de las Cinasas Janus/farmacología , Inhibidores de las Cinasas Janus/uso terapéutico , Mutación , Nitrilos , Fosforilación , Pirazoles , Pirimidinas , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT3/genéticaRESUMEN
Epigenetic mechanisms have emerged as an important contributor to tumor development through the modulation of gene expression. Our objective was to identify the methylation profile of the imprinted C19MC and MIR371-3 clusters in patients with non-small cell lung cancer (NSCLC) and to find their potential target genes, as well as to study their prognostic role. DNA methylation status was analyzed in a NSCLC patient cohort (n = 47) and compared with a control cohort including COPD patients and non-COPD subjects (n = 23) using the Illumina Infinium Human Methylation 450 BeadChip. Hypomethylation of miRNAs located on chromosome 19q13.42 was found to be specific for tumor tissue. We then identified the target mRNA-miRNA regulatory network for the components of the C19MC and MIR371-3 clusters using the miRTargetLink 2.0 Human tool. The correlations of miRNA-target mRNA expression from primary lung tumors were analyzed using the CancerMIRNome tool. From those negative correlations identified, we found that a lower expression of 5 of the target genes (FOXF2, KLF13, MICA, TCEAL1 and TGFBR2) was significantly associated with poor overall survival. Taken together, this study demonstrates that the imprinted C19MC and MIR371-3 miRNA clusters undergo polycistronic epigenetic regulation leading to deregulation of important and common target genes with potential prognostic value in lung cancer.
RESUMEN
After several decades without maintained responses or long-term survival of patients with lung cancer, novel therapies have emerged as a hopeful milestone in this research field. The appearance of immunotherapy, especially immune checkpoint inhibitors, has improved both the overall survival and quality of life of patients, many of whom are diagnosed late when classical treatments are ineffective. Despite these unprecedented results, a high percentage of patients do not respond initially to treatment or relapse after a period of response. This is due to resistance mechanisms, which require understanding in order to prevent them and develop strategies to overcome them and increase the number of patients who can benefit from immunotherapy. This review highlights the current knowledge of the mechanisms and their involvement in resistance to immunotherapy in lung cancer, such as aberrations in tumor neoantigen burden, effector T-cell infiltration in the tumor microenvironment (TME), epigenetic modulation, the transcriptional signature, signaling pathways, T-cell exhaustion, and the microbiome. Further research dissecting intratumor and host heterogeneity is necessary to provide answers regarding the immunotherapy response and develop more effective treatments for lung cancer.
RESUMEN
Genomic imprinting is a process that involves one gene copy turned-off in a parent-of-origin-dependent manner. The regulation of imprinted genes is broadly dependent on promoter methylation marks, which are frequently associated with both oncogenes and tumor suppressors. The purpose of this study was to assess the DNA methylation patterns of the imprinted solute-carrier family 22 member 18 (SLC22A18) and SLC22A18 antisense (SLC22A18AS) genes in non-small cell lung cancer (NSCLC) patients to study their relevance to the disease. We found that both genes were hypomethylated in adenocarcinoma and squamous cell carcinoma patients. Due to this imprinting loss, SLC22A18 and SLC22A18AS were found to be overexpressed in NSCLC tissues, which is significantly more evident in lung adenocarcinoma patients. These results were validated through analyses of public databases of NSCLC patients. The reversed gene profile of both genes was achieved in vitro by treatment with ademetionine. We then showed that high SLC22A18 and SLC22A18AS expression levels were significantly associated with worsening disease progression. In addition, low levels of SLC22A18AS were also correlated with better overall survival for lung adenocarcinoma patients. We found that SLC22A18 and SLC22A18AS knockdown inhibits cell proliferation in vitro. All these results suggest that both genes may be useful as diagnostic and prognostic biomarkers in NSCLC, revealing novel therapeutic opportunities.