Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Neurochem ; 157(6): 2106-2118, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33107046

RESUMEN

Modifications in the subunit composition of AMPA receptors (AMPARs) have been linked to the transition from physiological to pathological conditions in a number of contexts, including EtOH-induced neurotoxicity. Previous work from our laboratory showed that EtOH withdrawal causes CA1 pyramidal cell death in organotypic hippocampal slices and changes in the expression of AMPARs. Here, we investigated whether changes in expression and function of AMPARs may be causal for EtOH-induced neurotoxicity. To this aim, we examined the subunit composition, localization and function of AMPARs in hippocampal slices exposed to EtOH by using western blotting, surface expression assay, confocal microscopy and electrophysiology. We found that EtOH withdrawal specifically increases GluA1 protein signal in total homogenates, but not in the post-synaptic density-enriched fraction. This is suggestive of overall increase and redistribution of AMPARs to the extrasynaptic compartment. At functional level, AMPA-induced calcium influx was unexpectedly reduced, whereas AMPA-induced current was enhanced in CA1 pyramidal neurons following EtOH withdrawal, suggesting that increased AMPAR expression may lead to cell death because of elevated excitability, and not for a direct contribution on calcium influx. Finally, the neurotoxicity caused by EtOH withdrawal was attenuated by the non-selective AMPAR antagonist 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide disodium salt as well as by the selective antagonist of GluA2-lacking AMPARs 1-naphthyl acetyl spermine. We conclude that EtOH neurotoxicity involves changes in expression, surface localization and functional properties of AMPARs, and propose GluA2-lacking AMPARs as amenable specific targets for the development of neuroprotective drugs in EtOH-withdrawal syndrome.


Asunto(s)
Etanol/toxicidad , Regulación de la Expresión Génica , Ácido Glutámico/metabolismo , Hipocampo/metabolismo , Receptores AMPA/metabolismo , Animales , Antagonistas de Aminoácidos Excitadores/farmacología , Femenino , Citometría de Flujo/métodos , Ácido Glutámico/análisis , Hipocampo/química , Hipocampo/efectos de los fármacos , Masculino , Técnicas de Cultivo de Órganos , Ratas , Ratas Wistar , Receptores AMPA/análisis , Receptores AMPA/antagonistas & inhibidores
2.
Biophys J ; 119(2): 326-336, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32579964

RESUMEN

Amyloid aggregates have been demonstrated to exert cytotoxic effects in several diseases. It is widely accepted that the complex and fascinating aggregation pathway involves a series of steps during which many heterogeneous intermediates are generated. This process may be greatly potentiated by the presence of amphipathic components of plasma membrane because they may serve as interaction, condensation, and nucleation points. However, there are few data regarding structural alterations induced by the binding between the amyloid fibrils and membrane components and its direct effects on cell integrity. In this study, we found, by 1-anilinonaphthalene 8-sulfonic acid and transmission electron microscopy/fast Fourier transform, that yeast prion Sup35 oligomers showed higher structural uniformity and altered surface properties when grown in the presence of monosialotetrahexosylganglioside, a component of the cell membrane. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and confocal/sensitized Förster resonance energy transfer analyses revealed that these fibrils showed low cytotoxicity and affinity to plasma membrane. Moreover, time-lapse analysis of Sup35 oligomer fibrillation on cells suggested that the amyloid aggregation process per se exerts cytotoxic effects through the interaction of amyloid intermediates with plasma membrane components. These data provide, to our knowledge, new insights to understand the mechanism of amyloid growth and cytotoxicity in the pathogenesis of amyloid diseases.


Asunto(s)
Amiloide , Proteínas de Saccharomyces cerevisiae , Amiloide/toxicidad , Membrana Celular , Gangliósido G(M1) , Factores de Terminación de Péptidos , Saccharomyces cerevisiae
3.
FASEB J ; 33(3): 4007-4020, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30496700

RESUMEN

Aging and neurodegenerative diseases share a condition of neuroinflammation entailing the production of endogenous cell debris in the CNS that must be removed by microglia ( i.e., resident macrophages), to restore tissue homeostasis. In this context, extension of microglial cell branches toward cell debris underlies the mechanisms of microglial migration and phagocytosis. Amoeboid morphology and the consequent loss of microglial branch functionality characterizes dysregulated microglia. Microglial migration is assisted by another glial population, the astroglia, which forms a dense meshwork of cytoplasmic projections. Amoeboid microglia and disrupted astrocyte meshwork are consistent traits in aged CNS. In this study, we assessed a possible correlation between microglia and astroglia morphology in rat models of chronic neuroinflammation and aging, by 3-dimensional confocal analysis implemented with particle analysis. Our findings suggest that a microglia-astroglia interaction occurs in rat hippocampus via cell-cell contacts, mediating microglial cell branching in the presence of inflammation. In aged rats, the impairment of such an interaction correlates with altered distribution, morphology, and inefficient clearance by microglia. These data support the idea that generally accepted functional boundaries between microglia and astrocytes should be re-evaluated to better understand how their functions overlap and interact.-Lana, D., Ugolini, F., Wenk, G. L., Giovannini, M. G., Zecchi-Orlandini, S., Nosi, D. Microglial distribution, branching, and clearance activity in aged rat hippocampus are affected by astrocyte meshwork integrity: evidence of a novel cell-cell interglial interaction.


Asunto(s)
Envejecimiento/patología , Astrocitos/citología , Hipocampo/citología , Microglía/citología , Envejecimiento/metabolismo , Animales , Astrocitos/metabolismo , Astrocitos/patología , Hipocampo/crecimiento & desarrollo , Hipocampo/metabolismo , Inflamación/metabolismo , Inflamación/patología , Masculino , Microglía/metabolismo , Microglía/patología , Ratas , Ratas Wistar
4.
Cell Tissue Res ; 372(3): 549-570, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29404727

RESUMEN

Satellite cell-mediated skeletal muscle repair/regeneration is compromised in cases of extended damage. Bone marrow mesenchymal stromal cells (BM-MSCs) hold promise for muscle healing but some criticisms hamper their clinical application, including the need to avoid animal serum contamination for expansion and the scarce survival after transplant. In this context, platelet-rich plasma (PRP) could offer advantages. Here, we compare the effects of PRP or standard culture media on C2C12 myoblast, satellite cell and BM-MSC viability, survival, proliferation and myogenic differentiation and evaluate PRP/BM-MSC combination effects in promoting myogenic differentiation. PRP induced an increase of mitochondrial activity and Ki67 expression comparable or even greater than that elicited by standard media and promoted AKT signaling activation in myoblasts and BM-MSCs and Notch-1 pathway activation in BM-MSCs. It stimulated MyoD, myogenin, α-sarcomeric actin and MMP-2 expression in myoblasts and satellite cell activation. Notably, PRP/BM-MSC combination was more effective than PRP alone. We found that BM-MSCs influenced myoblast responses through a paracrine activation of AKT signaling, contributing to shed light on BM-MSC action mechanisms. Our results suggest that PRP represents a good serum substitute for BM-MSC manipulation in vitro and could be beneficial towards transplanted cells in vivo. Moreover, it might influence muscle resident progenitors' fate, thus favoring the endogenous repair/regeneration mechanisms. Finally, within the limitations of an in vitro experimentation, this study provides an experimental background for considering the PRP/BM-MSC combination as a potential therapeutic tool for skeletal muscle damage, combining the beneficial effects of BM-MSCs and PRP on muscle tissue, while potentiating BM-MSC functionality.


Asunto(s)
Células de la Médula Ósea/citología , Diferenciación Celular , Células Madre Mesenquimatosas/citología , Músculo Esquelético/fisiología , Mioblastos/citología , Plasma Rico en Plaquetas/metabolismo , Regeneración , Adolescente , Adulto , Células de la Médula Ósea/metabolismo , Proliferación Celular , Supervivencia Celular , Femenino , Humanos , Masculino , Células Madre Mesenquimatosas/metabolismo , Persona de Mediana Edad , Proteínas Musculares/metabolismo , Mioblastos/metabolismo , Comunicación Paracrina , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células Satélite del Músculo Esquelético/citología , Transducción de Señal , Adulto Joven
5.
Cells Tissues Organs ; 206(6): 283-295, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-31382258

RESUMEN

The persistence of activated myofibroblasts is a hallmark of fibrosis of many organs. Thus, the modulation of the generation/functionality of these cells may represent a strategical anti-fibrotic therapeutic option. Bone marrow-derived mesenchymal stromal cell (MSC)-based therapy has shown promising clues, but some criticisms still limit the clinical use of these cells, including the need to avoid xenogeneic compound contamination for ex vivo cell amplification and the identification of appropriate growth factors acting as a pre-conditioning agent and/or cell delivery vehicle during transplantation, thus enabling the improvement of cell survival in the host tissue microenvironment. Many studies have demonstrated the ability of platelet-rich plasma (PRP), a source of many biologically active molecules, to positively influence MSC proliferation, survival, and functionality, as well as its anti-fibrotic potential. Here we investigated the effects of PRP, murine and human bone marrow-derived MSCs, and of the combined treatment PRP/MSCs on in vitro differentiation of murine NIH/3T3 and human HDFα fibroblasts to myofibroblasts induced by transforming growth factor (TGF)-ß1, a well-known pro-fibrotic agent. The myofibroblastic phenotype was evaluated morphologically (cell shape and actin cytoskeleton assembly) and immunocytochemically (vinculin-rich focal adhesion clustering, α-smooth muscle actin and type-1 collagen expression). We found that PRP and MSCs, both as single treatments and in combination, were able to prevent the TGF-ß1-induced fibroblast-myofibroblast transition. Unexpectedly, the combination PRP/MSCs had no synergistic effects. In conclusion, within the limitations related to an in vitro experimentation, our study may contribute to providing an experimental background for supporting the anti-fibrotic potential of the combination PRP/MSCs which, once translated "from bench to bedside," could potentially offer advantages over the single treatments.

6.
Int J Mol Sci ; 19(7)2018 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-29970828

RESUMEN

Photobiomodulation (PBM) has been used for bone regenerative purposes in different fields of medicine and dentistry, but contradictory results demand a skeptical look for its potential benefits. This in vitro study compared PBM potentiality by red (635 ± 5 nm) or near-infrared (NIR, 808 ± 10 nm) diode lasers and violet-blue (405 ± 5 nm) light-emitting diode operating in a continuous wave with a 0.4 J/cm² energy density, on human osteoblast and mesenchymal stromal cell (hMSC) viability, proliferation, adhesion and osteogenic differentiation. PBM treatments did not alter viability (PI/Syto16 and MTS assays). Confocal immunofluorescence and RT-PCR analyses indicated that red PBM (i) on both cell types increased vinculin-rich clusters, osteogenic markers expression (Runx-2, alkaline phosphatase, osteopontin) and mineralized bone-like nodule structure deposition and (ii) on hMSCs induced stress fiber formation and upregulated the expression of proliferation marker Ki67. Interestingly, osteoblast responses to red light were mediated by Akt signaling activation, which seems to positively modulate reactive oxygen species levels. Violet-blue light-irradiated cells behaved essentially as untreated ones and NIR irradiated ones displayed modifications of cytoskeleton assembly, Runx-2 expression and mineralization pattern. Although within the limitations of an in vitro experimentation, this study may suggest PBM with 635 nm laser as potential effective option for promoting/improving bone regeneration.


Asunto(s)
Luz , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/efectos de la radiación , Osteoblastos/metabolismo , Osteoblastos/efectos de la radiación , Calcificación Fisiológica/efectos de la radiación , Adhesión Celular/efectos de la radiación , Diferenciación Celular/efectos de la radiación , Línea Celular , Proliferación Celular/efectos de la radiación , Supervivencia Celular/efectos de la radiación , Humanos , Láseres de Semiconductores , Osteogénesis/efectos de la radiación
7.
J Biol Chem ; 291(28): 14803-14, 2016 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-27226579

RESUMEN

Histamine, a major mediator in allergic diseases, differentially regulates the polarizing ability of dendritic cells after Toll-like receptor (TLR) stimulation, by not completely explained mechanisms. In this study we investigated the effects of histamine on innate immune reaction during the response of human monocyte-derived DCs (mDCs) to different TLR stimuli: LPS, specific for TLR4, and Pam3Cys, specific for heterodimer molecule TLR1/TLR2. We investigated actin remodeling induced by histamine together with mDCs phenotype, cytokine production, and the stimulatory and polarizing ability of Th0. By confocal microscopy and RT-PCR expression of Rac1/CdC42 Rho GTPases, responsible for actin remodeling, we show that histamine selectively modifies actin cytoskeleton organization induced by TLR4, but not TLR2 and this correlates with increased IL4 production and decreased IFNγ by primed T cells. We also demonstrate that histamine-induced cytoskeleton organization is at least in part mediated by down-regulation of small Rho GTPase CdC42 and the protein target PAK1, but not by down-regulation of Rac1. The presence and relative expression of histamine receptors HR1-4 and TLRs were determined as well. Independently of actin remodeling, histamine down-regulates IL12p70 and CXCL10 production in mDCs after TLR2 and TLR4 stimulation. We also observed a trend of IL10 up-regulation that, despite previous reports, did not reach statistical significance.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Linfocitos T CD4-Positivos/metabolismo , Células Dendríticas/metabolismo , Histamina/metabolismo , Monocitos/metabolismo , Receptor Toll-Like 4/metabolismo , Linfocitos T CD4-Positivos/citología , Diferenciación Celular , Células Cultivadas , Humanos , Prueba de Cultivo Mixto de Linfocitos , Monocitos/citología
8.
FASEB J ; 30(4): 1480-91, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26722005

RESUMEN

Alterations of the tightly interwoven neuron/astrocyte interactions are frequent traits of aging, but also favor neurodegenerative diseases, such as Alzheimer disease (AD). These alterations reflect impairments of the innate responses to inflammation-related processes, such as ß-amyloid (Aß) burdening. Multidisciplinary studies, spanning from the tissue to the molecular level, are needed to assess how neuron/astrocyte interactions are influenced by aging. Our study addressed this requirement by joining fluorescence-lifetime imaging microscopy/phasor multiphoton analysis with confocal microscopy, implemented with a novel method to separate spectrally overlapped immunofluorescence and Aß autofluorescence. By comparing data from young control rats, chronically inflamed rats, and old rats, we identified age-specific alterations of neuron/astrocyte interactions in the hippocampus. We found a correlation between Aß aggregation (+300 and +800% of aggregated Aß peptide in chronically inflamed and oldvs.control rats, respectively) and fragmentation (clasmatodendrosis) of astrocyte projections (APJs) (+250 and +1300% of APJ fragments in chronically inflamed and oldvs.control rats, respectively). Clasmatodendrosis, in aged rats, associates with impairment of astrocyte-mediated Aß clearance (-45% of Aß deposits on APJs, and +33% of Aß deposits on neurons in oldvs.chronically inflamed rats). Furthermore, APJ fragments colocalize with Aß deposits and are involved in novel Aß-mediated adhesions between neurons. These data define the effects of Aß deposition on astrocyte/neuron interactions as a key topic in AD biology.-Mercatelli, R., Lana, D., Bucciantini, M., Giovannini, M. G., Cerbai, F., Quercioli, F., Zecchi-Orlandini, S., Delfino, G., Wenk, G. L., Nos, D. Clasmatodendrosis and ß-amyloidosis in aging hippocampus.


Asunto(s)
Envejecimiento , Amiloidosis/patología , Astrocitos/patología , Región CA1 Hipocampal/patología , Factores de Edad , Péptidos beta-Amiloides/metabolismo , Amiloidosis/metabolismo , Animales , Antígenos Nucleares/metabolismo , Astrocitos/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Masculino , Microscopía Confocal , Microscopía Fluorescente , Proteínas del Tejido Nervioso/metabolismo , Ratas Wistar
9.
Proc Natl Acad Sci U S A ; 111(31): 11527-32, 2014 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-25049422

RESUMEN

Key factors driving eating behavior are hunger and satiety, which are controlled by a complex interplay of central neurotransmitter systems and peripheral stimuli. The lipid-derived messenger oleoylethanolamide (OEA) is released by enterocytes in response to fat intake and indirectly signals satiety to hypothalamic nuclei. Brain histamine is released during the appetitive phase to provide a high level of arousal in anticipation of feeding, and mediates satiety. However, despite the possible functional overlap of satiety signals, it is not known whether histamine participates in OEA-induced hypophagia. Using different experimental settings and diets, we report that the anorexiant effect of OEA is significantly attenuated in mice deficient in the histamine-synthesizing enzyme histidine decarboxylase (HDC-KO) or acutely depleted of histamine via interocerebroventricular infusion of the HDC blocker α-fluoromethylhistidine (α-FMH). α-FMH abolished OEA-induced early occurrence of satiety onset while increasing histamine release in the CNS with an H3 receptor antagonist-increased hypophagia. OEA augmented histamine release in the cortex of fasted mice within a time window compatible to its anorexic effects. OEA also increased c-Fos expression in the oxytocin neurons of the paraventricular nuclei of WT but not HDC-KO mice. The density of c-Fos immunoreactive neurons in other brain regions that receive histaminergic innervation and participate in the expression of feeding behavior was comparable in OEA-treated WT and HDC-KO mice. Our results demonstrate that OEA requires the integrity of the brain histamine system to fully exert its hypophagic effect and that the oxytocin neuron-rich nuclei are the likely hypothalamic area where brain histamine influences the central effects of OEA.


Asunto(s)
Encéfalo/metabolismo , Ingestión de Alimentos/efectos de los fármacos , Histamina/metabolismo , Ácidos Oléicos/farmacología , Respuesta de Saciedad/efectos de los fármacos , Animales , Conducta Animal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Endocannabinoides , Conducta Alimentaria/efectos de los fármacos , Histidina Descarboxilasa/metabolismo , Masculino , Ratones , Ratones Noqueados , Modelos Biológicos , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Núcleo Hipotalámico Paraventricular/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Factores de Tiempo
10.
Lasers Med Sci ; 32(6): 1309-1320, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28551763

RESUMEN

Preservation of implant biocompatibility following peri-implantitis treatments is a crucial issue in odontostomatological practice, being closely linked to implant re-osseointegration. Our aim was to assess the responses of osteoblast-like Saos2 cells and adult human bone marrow-mesenchymal stromal cells (MSCs) to oxidized titanium surfaces (TiUnite®, TiU) pre-treated with a 808 ± 10 nm GaAlAs diode laser operating in non-contact mode, in continuous (2 W, 400 J/cm2; CW) or pulsed (20 kHz, 7 µs, 0.44 W, 88 J/cm2; PW) wave, previously demonstrated to have a strong bactericidal effect and proposed as optional treatment for peri-implantitis. The biocompatibility of TiU surfaces pre-treated with chlorhexidine digluconate (CHX) was also evaluated. In particular, in order to mimic the in vivo approach, TiU surfaces were pre-treated with CHX (0.2%, 5 min); CHX and rinse; and CHX, rinse and air drying. In some experiments, the cells were cultured on untreated TiU before being exposed to CHX. Cell viability (MTS assay), proliferation (EdU incorporation assay; Ki67 confocal immunofluorescence analysis), adhesion (morphological analysis of actin cytoskeleton organization), and osteogenic differentiation (osteopontin confocal immunofluorescence analysis; mineralized bone-like nodule formation) analyses were performed. CHX resulted cytotoxic in all experimental conditions. Diode laser irradiation preserved TiU surface biocompatibility. Notably, laser treatment appeared even to improve the known osteoconductive properties of TiU surfaces. Within the limitations of an in vitro experimentation, this study contributes to provide additional experimental basis to support the potential use of 808 ± 10 nm GaAlAs diode laser at the indicated irradiation setting, in the treatment of peri-implantitis and to discourage the use of CHX.


Asunto(s)
Clorhexidina/farmacología , Láseres de Semiconductores , Células Madre Mesenquimatosas/citología , Osteoblastos/citología , Titanio/farmacología , Proliferación Celular/efectos de los fármacos , Proliferación Celular/efectos de la radiación , Forma de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Citoesqueleto/efectos de los fármacos , Citoesqueleto/efectos de la radiación , Fluorescencia , Humanos , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de la radiación , Osteoblastos/efectos de los fármacos , Osteoblastos/efectos de la radiación , Osteogénesis/efectos de los fármacos , Osteogénesis/efectos de la radiación , Propiedades de Superficie
11.
Lasers Med Sci ; 32(4): 857-864, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28283813

RESUMEN

Effective decontamination of biofilm and bacterial toxins from the surface of dental implants is a yet unresolved issue. This study investigates the in vitro efficacy of photodynamic treatment (PDT) with methylene blue (MB) photoactivated with λ 635 nm diode laser and of λ 405 nm violet-blue LED phototreatment for the reduction of bacterial biofilm and lipopolysaccharide (LPS) adherent to titanium surface mimicking the bone-implant interface. Staphylococcus aureus biofilm grown on titanium discs with a moderately rough surface was subjected to either PDT (0.1% MB and λ 635 nm diode laser) or λ 405 nm LED phototreatment for 1 and 5 min. Bactericidal effect was evaluated by vital staining and residual colony-forming unit count. Biofilm and titanium surface morphology were analyzed by scanning electron microscopy (SEM). In parallel experiments, discs coated with Escherichia coli LPS were treated as above before seeding with RAW 264.7 macrophages to quantify LPS-driven inflammatory cell activation by measuring the enhanced generation of nitric oxide (NO). Both PDT and LED phototreatment induced a statistically significant (p < 0.05 or higher) reduction of viable bacteria, up to -99 and -98% (5 min), respectively. Moreover, besides bactericidal effect, PDT and LED phototreatment also inhibited LPS bioactivity, assayed as nitrite formation, up to -42%, thereby blunting host inflammatory response. Non-invasive phototherapy emerges as an attractive alternative in the treatment of peri-implantitis to reduce bacteria and LPS adherent to titanium implant surface without causing damage of surface microstructure. Its efficacy in the clinical setting remains to be investigated.


Asunto(s)
Biopelículas/efectos de la radiación , Escherichia coli/efectos de la radiación , Luz , Lipopolisacáridos/farmacología , Fotoquimioterapia , Staphylococcus aureus/efectos de la radiación , Titanio/farmacología , Animales , Escherichia coli/efectos de los fármacos , Escherichia coli/ultraestructura , Fluorescencia , Láseres de Semiconductores , Ratones , Viabilidad Microbiana/efectos de la radiación , Células RAW 264.7 , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/ultraestructura , Titanio/química
12.
Biophys J ; 111(9): 2024-2038, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27806283

RESUMEN

Transthyretin (TTR) amyloidoses are familial or sporadic degenerative conditions that often feature heavy cardiac involvement. Presently, no effective pharmacological therapy for TTR amyloidoses is available, mostly due to a substantial lack of knowledge about both the molecular mechanisms of TTR aggregation in tissue and the ensuing functional and viability modifications that occur in aggregate-exposed cells. TTR amyloidoses are of particular interest regarding the relation between functional and viability impairment in aggregate-exposed excitable cells such as peripheral neurons and cardiomyocytes. In particular, the latter cells provide an opportunity to investigate in parallel the electrophysiological and biochemical modifications that take place when the cells are exposed for various lengths of time to variously aggregated wild-type TTR, a condition that characterizes senile systemic amyloidosis. In this study, we investigated biochemical and electrophysiological modifications in cardiomyocytes exposed to amyloid oligomers or fibrils of wild-type TTR or to its T4-stabilized form, which resists tetramer disassembly, misfolding, and aggregation. Amyloid TTR cytotoxicity results in mitochondrial potential modification, oxidative stress, deregulation of cytoplasmic Ca2+ levels, and Ca2+ cycling. The altered intracellular Ca2+ cycling causes a prolongation of the action potential, as determined by whole-cell recordings of action potentials on isolated mouse ventricular myocytes, which may contribute to the development of cellular arrhythmias and conduction alterations often seen in patients with TTR amyloidosis. Our data add information about the biochemical, functional, and viability alterations that occur in cardiomyocytes exposed to aggregated TTR, and provide clues as to the molecular and physiological basis of heart dysfunction in sporadic senile systemic amyloidosis and familial amyloid cardiomyopathy forms of TTR amyloidoses.


Asunto(s)
Amiloide/química , Amiloide/metabolismo , Fenómenos Electrofisiológicos , Miocitos Cardíacos/metabolismo , Prealbúmina/química , Prealbúmina/metabolismo , Agregado de Proteínas , Animales , Calcio/metabolismo , Citoplasma/metabolismo , Ventrículos Cardíacos/citología , Humanos , Ratones , Ratones Endogámicos C57BL
13.
J Cell Mol Med ; 20(8): 1443-56, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26990223

RESUMEN

The first genetic variant of ß2 -microglobulin (b2M) associated with a familial form of systemic amyloidosis has been recently described. The mutated protein, carrying a substitution of Asp at position 76 with an Asn (D76N b2M), exhibits a strongly enhanced amyloidogenic tendency to aggregate with respect to the wild-type protein. In this study, we characterized the D76N b2M aggregation path and performed an unprecedented analysis of the biochemical mechanisms underlying aggregate cytotoxicity. We showed that, contrarily to what expected from other amyloid studies, early aggregates of the mutant are not the most toxic species, despite their higher surface hydrophobicity. By modulating ganglioside GM1 content in cell membrane or synthetic lipid bilayers, we confirmed the pivotal role of this lipid as aggregate recruiter favouring their cytotoxicity. We finally observed that the aggregates bind to the cell membrane inducing an alteration of its elasticity (with possible functional unbalance and cytotoxicity) in GM1-enriched domains only, thus establishing a link between aggregate-membrane contact and cell damage.


Asunto(s)
Amiloide/toxicidad , Proteínas Mutantes/toxicidad , Microglobulina beta-2/toxicidad , Fenómenos Biofísicos/efectos de los fármacos , Calcio/metabolismo , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Difusión , Gangliósido G(M1) , Humanos , Membrana Dobles de Lípidos/metabolismo , Microscopía de Fuerza Atómica , Agregado de Proteínas/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
14.
Lasers Surg Med ; 48(3): 318-32, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26660509

RESUMEN

BACKGROUND AND OBJECTIVE: Low-level laser therapy (LLLT) or photobiomodulation therapy is emerging as a promising new therapeutic option for fibrosis in different damaged and/or diseased organs. However, the anti-fibrotic potential of this treatment needs to be elucidated and the cellular and molecular targets of the laser clarified. Here, we investigated the effects of a low intensity 635 ± 5 nm diode laser irradiation on fibroblast-myofibroblast transition, a key event in the onset of fibrosis, and elucidated some of the underlying molecular mechanisms. MATERIALS AND METHODS: NIH/3T3 fibroblasts were cultured in a low serum medium in the presence of transforming growth factor (TGF)-ß1 and irradiated with a 635 ± 5 nm diode laser (continuous wave, 89 mW, 0.3 J/cm(2) ). Fibroblast-myofibroblast differentiation was assayed by morphological, biochemical, and electrophysiological approaches. Expression of matrix metalloproteinase (MMP)-2 and MMP-9 and of Tissue inhibitor of MMPs, namely TIMP-1 and TIMP-2, after laser exposure was also evaluated by confocal immunofluorescence analyses. Moreover, the effect of the diode laser on transient receptor potential canonical channel (TRPC) 1/stretch-activated channel (SAC) expression and activity and on TGF-ß1/Smad3 signaling was investigated. RESULTS: Diode laser treatment inhibited TGF-ß1-induced fibroblast-myofibroblast transition as judged by reduction of stress fibers formation, α-smooth muscle actin (sma) and type-1 collagen expression and by changes in electrophysiological properties such as resting membrane potential, cell capacitance and inwardly rectifying K(+) currents. In addition, the irradiation up-regulated the expression of MMP-2 and MMP-9 and downregulated that of TIMP-1 and TIMP-2 in TGF-ß1-treated cells. This laser effect was shown to involve TRPC1/SAC channel functionality. Finally, diode laser stimulation and TRPC1 functionality negatively affected fibroblast-myofibroblast transition by interfering with TGF-ß1 signaling, namely reducing the expression of Smad3, the TGF-ß1 downstream signaling molecule. CONCLUSION: Low intensity irradiation with 635 ± 5 nm diode laser inhibited TGF-ß1/Smad3-mediated fibroblast-myofibroblast transition and this effect involved the modulation of TRPC1 ion channels. These data contribute to support the potential anti-fibrotic effect of LLLT and may offer further informations for considering this therapy as a promising therapeutic tool for the treatment of tissue fibrosis.


Asunto(s)
Diferenciación Celular/efectos de la radiación , Láseres de Semiconductores/uso terapéutico , Terapia por Luz de Baja Intensidad/métodos , Miofibroblastos/efectos de la radiación , Animales , Biomarcadores/metabolismo , Western Blotting , Diferenciación Celular/fisiología , Células Cultivadas , Fibroblastos/fisiología , Fibroblastos/efectos de la radiación , Fibrosis/metabolismo , Fibrosis/radioterapia , Ratones , Miofibroblastos/fisiología , Células 3T3 NIH , Técnicas de Placa-Clamp , Canales Catiónicos TRPC/metabolismo
15.
J Cell Mol Med ; 19(6): 1410-7, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25691007

RESUMEN

Mitochondria play a crucial role in pathways of stress conditions. They can be transported from one cell to another, bringing their features to the cell where they are transported. It has been shown in cancer cells overexpressing multidrug resistance (MDR) that mitochondria express proteins involved in drug resistance such as P-glycoprotein (P-gp), breast cancer resistant protein and multiple resistance protein-1. The MDR phenotype is associated with the constitutive expression of COX-2 and iNOS, whereas celecoxib, a specific inhibitor of COX-2 activity, reverses drug resistance of MDR cells by releasing cytochrome c from mitochondria. It is possible that COX-2 and iNOS are also expressed in mitochondria of cancer cells overexpressing the MDR phenotype. This study involved experiments using the human HCC PLC/PRF/5 cell line with and without MDR phenotype and melanoma A375 cells that do not express the MDR1 phenotype but they do iNOS. Western blot analysis, confocal immunofluorescence and immune electron microscopy showed that iNOS is localized in mitochondria of MDR1-positive cells, whereas COX-2 is not. Low and moderate concentrations of celecoxib modulate the expression of iNOS and P-gp in mitochondria of MDR cancer cells independently from inhibition of COX-2 activity. However, A375 cells that express iNOS also in mitochondria, were not MDR1 positive. In conclusion, iNOS can be localized in mitochondria of HCC cells overexpressing MDR1 phenotype, however this phenomenon appears independent from the MDR1 phenotype occurrence. The presence of iNOS in mitochondria of human HCC cells phenotype probably concurs to a more aggressive behaviour of cancer cells.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Western Blotting , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Celecoxib/farmacología , Línea Celular Tumoral , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Inhibidores de la Ciclooxigenasa 2/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Microscopía Confocal , Microscopía Inmunoelectrónica , Mitocondrias/genética , Óxido Nítrico Sintasa de Tipo II/genética
16.
Wound Repair Regen ; 23(1): 115-23, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25571903

RESUMEN

Growing evidence has shown the promise of mesenchymal stromal cells (MSCs) for the treatment of cutaneous wound healing. We have previously demonstrated that MSCs seeded on an artificial dermal matrix, Integra (Integra Lifesciences Corp., Plainsboro, NJ) enriched with platelet-rich plasma (Ematrix) have enhanced proliferative potential in vitro as compared with those cultured on the scaffold alone. In this study, we extended the experimentation by evaluating the efficacy of the MSCs seeded scaffolds in the healing of skin wounds in an animal model in vivo. It was found that the presence of MSCs within the scaffolds greatly ameliorated the quality of regenerated skin, reduced collagen deposition, enhanced reepithelization, increased neo-angiogenesis, and promoted a greater return of hair follicles and sebaceous glands. The mechanisms involved in these beneficial effects were likely related to the ability of MSCs to release paracrine factors modulating the wound healing response. MSC-seeded scaffolds, in fact, up-regulated matrix metalloproteinase 9 expression in the extracellular matrix and enhanced the recruitment of endogenous progenitors during tissue repair. In conclusion, the results of this study provide evidence that the treatment with MSC-seeded scaffolds of cutaneous wounds contributes to the recreation of a suitable microenvironment for promoting tissue repair/regeneration at the implantation sites.


Asunto(s)
Matriz Extracelular/patología , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/metabolismo , Piel/fisiopatología , Ingeniería de Tejidos , Cicatrización de Heridas , Heridas y Lesiones/fisiopatología , Animales , Diferenciación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Masculino , Ratas , Regeneración , Piel/lesiones
17.
Exp Cell Res ; 323(2): 297-313, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24631289

RESUMEN

Recent studies indicate that mesenchymal stromal cell (MSC) transplantation improves healing of injured and diseased skeletal muscle, although the mechanisms of benefit are poorly understood. In the present study, we investigated whether MSCs and/or their trophic factors were able to regulate matrix metalloproteinase (MMP) expression and activity in different cells of the muscle tissue. MSCs in co-culture with C2C12 cells or their conditioned medium (MSC-CM) up-regulated MMP-2 and MMP-9 expression and function in the myoblastic cells; these effects were concomitant with the down-regulation of the tissue inhibitor of metalloproteinases (TIMP)-1 and -2 and with increased cell motility. In the single muscle fiber experiments, MSC-CM administration increased MMP-2/9 expression in Pax-7(+) satellite cells and stimulated their mobilization, differentiation and fusion. The anti-fibrotic properties of MSC-CM involved also the regulation of MMPs by skeletal fibroblasts and the inhibition of their differentiation into myofibroblasts. The treatment with SB-3CT, a potent MMP inhibitor, prevented in these cells, the decrease of α-smooth actin and type-I collagen expression induced by MSC-CM, suggesting that MSC-CM could attenuate the fibrogenic response through mechanisms mediated by MMPs. Our results indicate that growth factors and cytokines released by these cells may modulate the fibrotic response and improve the endogenous mechanisms of muscle repair/regeneration.


Asunto(s)
Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Células Madre Mesenquimatosas/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Actinas/genética , Actinas/metabolismo , Animales , Diferenciación Celular , Movimiento Celular , Células Cultivadas , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Medios de Cultivo Condicionados/farmacología , Citocinas/farmacología , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Compuestos Heterocíclicos con 1 Anillo/farmacología , Humanos , Péptidos y Proteínas de Señalización Intercelular/farmacología , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/genética , Inhibidores de la Metaloproteinasa de la Matriz/farmacología , Ratones , Fibras Musculares Esqueléticas/efectos de los fármacos , Células 3T3 NIH , Sulfonas/farmacología , Inhibidor Tisular de Metaloproteinasa-1/genética , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Inhibidor Tisular de Metaloproteinasa-2/genética , Inhibidor Tisular de Metaloproteinasa-2/metabolismo
18.
Biochim Biophys Acta ; 1833(12): 3155-3165, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24035922

RESUMEN

This work aims at elucidating the relation between morphological and physicochemical properties of different ataxin-3 (ATX3) aggregates and their cytotoxicity. We investigated a non-pathological ATX3 form (ATX3Q24), a pathological expanded form (ATX3Q55), and an ATX3 variant truncated at residue 291 lacking the polyQ expansion (ATX3/291Δ). Solubility, morphology and hydrophobic exposure of oligomeric aggregates were characterized. Then we monitored the changes in the intracellular Ca(2+) levels and the abnormal Ca(2+) signaling resulting from aggregate interaction with cultured rat cerebellar granule cells. ATX3Q55, ATX3/291Δ and, to a lesser extent, ATX3Q24 oligomers displayed similar morphological and physicochemical features and induced qualitatively comparable time-dependent intracellular Ca(2+) responses. However, only the pre-fibrillar aggregates of expanded ATX3 (the only variant which forms bundles of mature fibrils) triggered a characteristic Ca(2+) response at a later stage that correlated with a larger hydrophobic exposure relative to the two other variants. Cell interaction with early oligomers involved glutamatergic receptors, voltage-gated channels and monosialotetrahexosylganglioside (GM1)-rich membrane domains, whereas cell interaction with more aged ATX3Q55 pre-fibrillar aggregates resulted in membrane disassembly by a mechanism involving only GM1-rich areas. Exposure to ATX3Q55 and ATX3/291Δ aggregates resulted in cell apoptosis, while ATX3Q24 was substantially innocuous. Our findings provide insight into the mechanisms of ATX3 aggregation, aggregate cytotoxicity and calcium level modifications in exposed cerebellar cells.


Asunto(s)
Amiloide/toxicidad , Calcio/metabolismo , Cerebelo/citología , Espacio Intracelular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/toxicidad , Animales , Apoptosis/efectos de los fármacos , Canales de Calcio/metabolismo , Membrana Celular/metabolismo , Gangliósido G(M1)/farmacología , Microscopía de Fuerza Atómica , Unión Proteica/efectos de los fármacos , Estructura Cuaternaria de Proteína , Ratas , Ratas Sprague-Dawley , Receptores AMPA/metabolismo , Espectrometría de Fluorescencia , Factores de Tiempo
19.
Crit Care Med ; 42(8): e570-82, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24810523

RESUMEN

OBJECTIVE: The development of sepsis in patients with traumatic brain injury increases mortality, exacerbates morphological and functional cerebral damage, and causes persistent neuroinflammation, including microglial activation. The administration of antibiotics possessing both antimicrobial and immunomodulatory activity might attenuate both sepsis and posttraumatic cerebral inflammation. We compared the potential therapeutic efficacy of two tetracyclines, minocycline and the newer generation tigecycline, on functional neurobehavioral impairment and regional histopathological damage in an experimental model of combined traumatic brain injury and sepsis. DESIGN: Prospective, experimental animal study. SETTING: University Research Laboratory. SUBJECTS: Adult male Sprague-Dawley rats. INTERVENTIONS: Controlled cortical impact was used to induce traumatic brain injury and cecal ligation and puncture for sepsis. Immediately following injury, animals were treated with minocycline (45 mg/kg intraperitoneal), tigecycline (7.5 mg/kg intraperitoneal), or saline every 12 hours for 3 days. MEASUREMENTS AND MAIN RESULTS: The development of sepsis and cerebral inflammatory response were evaluated, respectively, by 1) growth of peritoneal microorganisms and clinical variables and 2) tumor necrosis factor-α expression in the perilesional cortex. To assess posttraumatic outcome, vestibulomotor and cognitive function were evaluated at different time points for 14 days post injury whereupon animals were killed and cerebral tissue analyzed for lesion volume, regional hippocampal (CA1/CA3) cell death, and microglial activation in the perilesional cortex, lesion core zone, and choroid plexus. Treatment with both antibiotics reduced microorganism growth, body weight loss, and mortality but had no effect on vestibulomotor or cognitive function. Minocycline alone attenuated postinjury cortical lesion volume, hippocampal CA3 neuronal cell loss, tumor necrosis factor-α expression, and the extent of microglial activation and infiltration. CONCLUSIONS: The significantly heightened mortality caused by the superimposition of sepsis upon traumatic brain injury can be reduced by administration of both antibiotics but only minocycline can decrease the extent of cell death in selectively cortical and hippocampal brain regions, via, in part, a reduction in cerebral inflammation.


Asunto(s)
Antiinflamatorios/uso terapéutico , Lesiones Encefálicas/complicaciones , Encefalitis/tratamiento farmacológico , Minociclina/análogos & derivados , Minociclina/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Sepsis/tratamiento farmacológico , Animales , Antibacterianos/uso terapéutico , Encefalitis/etiología , Factores Inmunológicos/uso terapéutico , Masculino , Estudios Prospectivos , Ratas , Ratas Sprague-Dawley , Sepsis/etiología , Tigeciclina
20.
J Cell Physiol ; 228(1): 172-81, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22628164

RESUMEN

Mesenchymal stromal cells (MSCs) are a promising cell candidate in tissue engineering and regenerative medicine. Their proliferative potential can be increased by low-level laser irradiation (LLLI), but the mechanisms involved remain to be clarified. With the aim of expanding the therapeutic application of LLLI to MSC therapy, in the present study we investigated the effects of 635 nm diode laser on mouse MSC proliferation and investigated the underlying cellular and molecular mechanisms, focusing the attention on the effects of laser irradiation on Notch-1 signal activation and membrane ion channel modulation. It was found that MSC proliferation was significantly enhanced after laser irradiation, as judged by time lapse videomicroscopy and EdU incorporation. This phenomenon was associated with the up-regulation and activation of Notch-1 pathway, and with increased membrane conductance through voltage-gated K(+) , BK and Kir, channels and T- and L-type Ca(2+) channels. We also showed that MSC proliferation was mainly dependent on Kir channel activity, on the basis that the cell growth and Notch-1 up-regulation were severely decreased by the pre-treatment with the channel inhibitor Ba(2+) (0.5 mM). Interestingly, the channel inhibition was also able to attenuate the stimulatory effects of diode laser on MSCs, thus providing novel evidence to expand our knowledge on the mechanisms of biostimulation after LLLI. In conclusions, our findings suggest that diode laser may be a valid approach for the preconditioning of MSCs in vitro prior cell transplantation.


Asunto(s)
Células de la Médula Ósea/efectos de la radiación , Láseres de Semiconductores , Células Madre Mesenquimatosas/efectos de la radiación , Animales , Células de la Médula Ósea/fisiología , Proliferación Celular/efectos de la radiación , Supervivencia Celular , Desoxiuridina/análogos & derivados , Desoxiuridina/metabolismo , Fenómenos Electrofisiológicos , Regulación de la Expresión Génica , Células Madre Mesenquimatosas/fisiología , Ratones , Técnicas de Placa-Clamp , Canales de Potasio con Entrada de Voltaje , Receptor Notch1/genética , Receptor Notch1/metabolismo , Coloración y Etiquetado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA