Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(40): 25074-25084, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32948690

RESUMEN

We are only just beginning to catalog the vast diversity of cell types in the cerebral cortex. Such categorization is a first step toward understanding how diversification relates to function. All cortical projection neurons arise from a uniform pool of progenitor cells that lines the ventricles of the forebrain. It is still unclear how these progenitor cells generate the more than 50 unique types of mature cortical projection neurons defined by their distinct gene-expression profiles. Moreover, exactly how and when neurons diversify their function during development is unknown. Here we relate gene expression and chromatin accessibility of two subclasses of projection neurons with divergent morphological and functional features as they develop in the mouse brain between embryonic day 13 and postnatal day 5 in order to identify transcriptional networks that diversify neuron cell fate. We compare these gene-expression profiles with published profiles of single cells isolated from similar populations and establish that layer-defined cell classes encompass cell subtypes and developmental trajectories identified using single-cell sequencing. Given the depth of our sequencing, we identify groups of transcription factors with particularly dense subclass-specific regulation and subclass-enriched transcription factor binding motifs. We also describe transcription factor-adjacent long noncoding RNAs that define each subclass and validate the function of Myt1l in balancing the ratio of the two subclasses in vitro. Our multidimensional approach supports an evolving model of progressive restriction of cell fate competence through inherited transcriptional identities.


Asunto(s)
Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Análisis de la Célula Individual , Factores de Transcripción/genética , Animales , Diferenciación Celular/genética , Corteza Cerebral/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Ratones , RNA-Seq/métodos
2.
Nucleic Acids Res ; 46(7): 3517-3531, 2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29518216

RESUMEN

Thousands of human disease-associated single nucleotide polymorphisms (SNPs) lie in the non-coding genome, but only a handful have been demonstrated to affect gene expression and human biology. We computationally identified risk-associated SNPs in deeply conserved non-exonic elements (CNEs) potentially contributing to 45 human diseases. We further demonstrated that human CNE1/rs17421627 associated with retinal vasculature defects showed transcriptional activity in the zebrafish retina, while introducing the risk-associated allele completely abolished CNE1 enhancer activity. Furthermore, deletion of CNE1 led to retinal vasculature defects and to a specific downregulation of microRNA-9, rather than MEF2C as predicted by the original genome-wide association studies. Consistent with these results, miR-9 depletion affects retinal vasculature formation, demonstrating MIR-9-2 as a critical gene underpinning the associated trait. Importantly, we validated that other CNEs act as transcriptional enhancers that can be disrupted by conserved non-coding SNPs. This study uncovers disease-associated non-coding mutations that are deeply conserved, providing a path for in vivo testing to reveal their cis-regulated genes and biological roles.


Asunto(s)
Elementos de Facilitación Genéticos/genética , MicroARNs/genética , Vasculitis Retiniana/genética , Alelos , Animales , Secuencia Conservada/genética , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/genética , Estudio de Asociación del Genoma Completo , Humanos , Factores de Transcripción MEF2/genética , Mutación , Polimorfismo de Nucleótido Simple/genética , Retina/metabolismo , Retina/patología , Vasculitis Retiniana/patología , Pez Cebra/genética
3.
Genome Res ; 26(8): 1013-22, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27325115

RESUMEN

Exome sequencing studies have identified multiple genes harboring de novo loss-of-function (LoF) variants in individuals with autism spectrum disorders (ASD), including TBR1, a master regulator of cortical development. We performed ChIP-seq for TBR1 during mouse cortical neurogenesis and show that TBR1-bound regions are enriched adjacent to ASD genes. ASD genes were also enriched among genes that are differentially expressed in Tbr1 knockouts, which together with the ChIP-seq data, suggests direct transcriptional regulation. Of the nine ASD genes examined, seven were misexpressed in the cortices of Tbr1 knockout mice, including six with increased expression in the deep cortical layers. ASD genes with adjacent cortical TBR1 ChIP-seq peaks also showed unusually low levels of LoF mutations in a reference human population and among Icelanders. We then leveraged TBR1 binding to identify an appealing subset of candidate ASD genes. Our findings highlight a TBR1-regulated network of ASD genes in the developing neocortex that are relatively intolerant to LoF mutations, indicating that these genes may play critical roles in normal cortical development.


Asunto(s)
Trastorno del Espectro Autista/genética , Proteínas de Unión al ADN/genética , Neocórtex/fisiopatología , Neurogénesis/genética , Animales , Trastorno del Espectro Autista/fisiopatología , Modelos Animales de Enfermedad , Exoma/genética , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Humanos , Ratones , Mutación , Neocórtex/crecimiento & desarrollo , Neuronas/metabolismo , Neuronas/patología , Factores de Riesgo , Proteínas de Dominio T Box
4.
PLoS Genet ; 9(8): e1003728, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24009522

RESUMEN

Genetic studies have identified a core set of transcription factors and target genes that control the development of the neocortex, the region of the human brain responsible for higher cognition. The specific regulatory interactions between these factors, many key upstream and downstream genes, and the enhancers that mediate all these interactions remain mostly uncharacterized. We perform p300 ChIP-seq to identify over 6,600 candidate enhancers active in the dorsal cerebral wall of embryonic day 14.5 (E14.5) mice. Over 95% of the peaks we measure are conserved to human. Eight of ten (80%) candidates tested using mouse transgenesis drive activity in restricted laminar patterns within the neocortex. GREAT based computational analysis reveals highly significant correlation with genes expressed at E14.5 in key areas for neocortex development, and allows the grouping of enhancers by known biological functions and pathways for further studies. We find that multiple genes are flanked by dozens of candidate enhancers each, including well-known key neocortical genes as well as suspected and novel genes. Nearly a quarter of our candidate enhancers are conserved well beyond mammals. Human and zebrafish regions orthologous to our candidate enhancers are shown to most often function in other aspects of central nervous system development. Finally, we find strong evidence that specific interspersed repeat families have contributed potentially key developmental enhancers via co-option. Our analysis expands the methodologies available for extracting the richness of information found in genome-wide functional maps.


Asunto(s)
Elementos de Facilitación Genéticos , Evolución Molecular , Neocórtex/crecimiento & desarrollo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Animales , Secuencia de Bases , Secuencia Conservada/genética , Regulación del Desarrollo de la Expresión Génica , Humanos , Ratones , Neocórtex/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Regiones Promotoras Genéticas , Factores de Transcripción/genética , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo
5.
Nucleic Acids Res ; 41(15): e151, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23814184

RESUMEN

Many important model organisms for biomedical and evolutionary research have sequenced genomes, but occupy a phylogenetically isolated position, evolutionarily distant from other sequenced genomes. This phylogenetic isolation is exemplified for zebrafish, a vertebrate model for cis-regulation, development and human disease, whose evolutionary distance to all other currently sequenced fish exceeds the distance between human and chicken. Such large distances make it difficult to align genomes and use them for comparative analysis beyond gene-focused questions. In particular, detecting conserved non-genic elements (CNEs) as promising cis-regulatory elements with biological importance is challenging. Here, we develop a general comparative genomics framework to align isolated genomes and to comprehensively detect CNEs. Our approach integrates highly sensitive and quality-controlled local alignments and uses alignment transitivity and ancestral reconstruction to bridge large evolutionary distances. We apply our framework to zebrafish and demonstrate substantially improved CNE detection and quality compared with previous sets. Our zebrafish CNE set comprises 54 533 CNEs, of which 11 792 (22%) are conserved to human or mouse. Our zebrafish CNEs (http://zebrafish.stanford.edu) are highly enriched in known enhancers and extend existing experimental (ChIP-Seq) sets. The same framework can now be applied to the isolated genomes of frog, amphioxus, Caenorhabditis elegans and many others.


Asunto(s)
Biología Computacional/métodos , Secuencia Conservada , Filogenia , Análisis de Secuencia de ADN/métodos , Pez Cebra/genética , Animales , Secuencia de Bases , Evolución Molecular , Genómica/métodos , Internet , Anotación de Secuencia Molecular , Secuencias Reguladoras de Ácidos Nucleicos , Sensibilidad y Especificidad , Alineación de Secuencia , Sintenía , Pez Cebra/clasificación
6.
Front Cell Neurosci ; 12: 159, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29970990

RESUMEN

Recent advances in single-cell technologies are paving the way to a comprehensive understanding of the cellular complexity in the brain. Protocols for single-cell transcriptomics combine a variety of sophisticated methods for the purpose of isolating the heavily interconnected and heterogeneous neuronal cell types in a relatively intact and healthy state. The emphasis of single-cell transcriptome studies has thus far been on comparing library generation and sequencing techniques that enable measurement of the minute amounts of starting material from a single cell. However, in order for data to be comparable, standardized cell isolation techniques are essential. Here, we analyzed and simplified methods for the different steps critically involved in single-cell isolation from brain. These include enzymatic digestion, tissue trituration, improved methods for efficient fluorescence-activated cell sorting in samples containing high degree of debris from the neuropil, and finally, highly region-specific cellular labeling compatible with use of stereotaxic coordinates. The methods are exemplified using medium spiny neurons (MSN) from dorsomedial striatum, a cell type that is clinically relevant for disorders of the basal ganglia, including psychiatric and neurodegenerative diseases. We present single-cell RNA sequencing (scRNA-Seq) data from D1 and D2 dopamine receptor expressing MSN subtypes. We illustrate the need for single-cell resolution by comparing to available population-based gene expression data of striatal MSN subtypes. Our findings contribute toward standardizing important steps of single-cell isolation from adult brain tissue to increase comparability of data. Furthermore, our data redefine the transcriptome of MSNs at unprecedented resolution by confirming established marker genes, resolving inconsistencies from previous gene expression studies, and identifying novel subtype-specific marker genes in this important cell type.

7.
Cell Rep ; 20(7): 1533-1542, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28813666

RESUMEN

In the developing brain, neurons expressing VEGF-A and blood vessels grow in close apposition, but many of the molecular pathways regulating neuronal VEGF-A and neurovascular system development remain to be deciphered. Here, we show that miR-9 links neurogenesis and angiogenesis through the formation of neurons expressing VEGF-A. We found that miR-9 directly targets the transcription factors TLX and ONECUTs to regulate VEGF-A expression. miR-9 inhibition leads to increased TLX and ONECUT expression, resulting in VEGF-A overexpression. This untimely increase of neuronal VEGF-A signal leads to the thickening of blood vessels at the expense of the normal formation of the neurovascular network in the brain and retina. Thus, this conserved transcriptional cascade is critical for proper brain development in vertebrates. Because of this dual role on neural stem cell proliferation and angiogenesis, miR-9 and its downstream targets are promising factors for cellular regenerative therapy following stroke and for brain tumor treatment.


Asunto(s)
Corteza Cerebral/metabolismo , MicroARNs/genética , Neovascularización Fisiológica/genética , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Factor A de Crecimiento Endotelial Vascular/genética , Animales , Secuencia de Bases , Sitios de Unión , Diferenciación Celular , Proliferación Celular , Corteza Cerebral/crecimiento & desarrollo , Embrión no Mamífero , Feto , Regulación del Desarrollo de la Expresión Génica , Factor Nuclear 6 del Hepatocito/genética , Factor Nuclear 6 del Hepatocito/metabolismo , Humanos , MicroARNs/metabolismo , Morfogénesis/genética , Células-Madre Neurales/citología , Neuronas/metabolismo , Neuronas/patología , Receptores Nucleares Huérfanos , Cultivo Primario de Células , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Retina/crecimiento & desarrollo , Retina/metabolismo , Transducción de Señal , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Pez Cebra
8.
Nat Commun ; 6: 6644, 2015 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-25806706

RESUMEN

The neocortex is a mammalian-specific structure that is responsible for higher functions such as cognition, emotion and perception. To gain insight into its evolution and the gene regulatory codes that pattern it, we studied the overlap of its active developmental enhancers with transposable element (TE) families and compared this overlap to uniformly shuffled enhancers. Here we show a striking enrichment of the MER130 repeat family among active enhancers in the mouse dorsal cerebral wall, which gives rise to the neocortex, at embryonic day 14.5. We show that MER130 instances preserve a common code of transcriptional regulatory logic, function as enhancers and are adjacent to critical neocortical genes. MER130, a nonautonomous interspersed TE, originates in the tetrapod or possibly Sarcopterygii ancestor, which far predates the appearance of the neocortex. Our results show that MER130 elements were recruited, likely through their common regulatory logic, as neocortical enhancers.


Asunto(s)
Elementos Transponibles de ADN/genética , Elementos de Facilitación Genéticos/genética , Regulación del Desarrollo de la Expresión Génica/genética , Neocórtex/embriología , Factores de Transcripción/genética , Animales , Bases de Datos Genéticas , Proteína p300 Asociada a E1A/metabolismo , Embrión de Mamíferos , Evolución Molecular , Ratones , Neocórtex/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA