Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(3): e2212105120, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36623184

RESUMEN

Windthrow, or the uprooting of trees by extreme wind gusts, is a natural forest disturbance that creates microhabitats, turns over soil, alters hydrology, and removes carbon from the above-ground carbon stock. Long recurrence intervals between extreme wind events, however, make direct observations of windthrow rare, challenging our understanding of this important disturbance process. To overcome this difficulty, we present an approach that uses the geomorphic record of hillslope topographic roughness as a proxy for the occurrence of windthrow. The approach produces a probability function of the number of annual windthrow events for a maximum wind speed, allowing us to explore how windthrow or tree strengths may change due to shifting wind climates. Slight changes to extreme wind speeds may drive comparatively large changes in windthrow production rates or force trees to respond and change the distribution. We also highlight that topographic roughness has the potential to serve as an important archive of extreme wind speeds.


Asunto(s)
Bosques , Viento , Clima , Carbono
2.
Ecol Lett ; 27(1): e14349, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38178545

RESUMEN

The emergence of billions of periodical cicadas affects plant and animal communities profoundly, yet little is known about cicada impacts on soil carbon fluxes. We investigated the effects of Brood X cicadas (Magicicada septendecim, M. cassinii and M. septendeculain) on soil CO2 fluxes (RS ) in three Indiana forests. We hypothesized RS would be sensitive to emergence hole density, with the greatest effects occurring in soils with the lowest ambient fluxes. In support of our hypothesis, RS increased with increasing hole density and greater effects were observed near AM-associating trees (which expressed lower ambient fluxes) than near EcM-associating trees. Additionally, RS from emergence holes increased the temperature sensitivity (Q10 ) of RS by 13%, elevating the Q10 of ecosystem respiration. Brood X cicadas increased annual RS by ca. 2.5%, translating to an additional 717 Gg of CO2 across forested areas. As such, periodical cicadas can have substantial effects on soil processes and biogeochemistry.


Asunto(s)
Hemípteros , Micorrizas , Animales , Árboles , Ecosistema , Suelo , Dióxido de Carbono , Bosques
3.
New Phytol ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39238117

RESUMEN

It is well-known that the mycorrhizal type of plants correlates with different modes of nutrient cycling and availability. However, the differences in drought tolerance between arbuscular mycorrhizal (AM) and ectomycorrhizal (EcM) plants remains poorly characterized. We synthesized a global dataset of four hydraulic traits associated with drought tolerance of 1457 woody species (1139 AM and 318 EcM species) at 308 field sites. We compared these traits between AM and EcM species, with evolutionary history (i.e. angiosperms vs gymnosperms), water availability (i.e. aridity index) and biomes considered as additional factors. Overall, we found that evolutionary history and biogeography influenced differences in hydraulic traits between mycorrhizal types. Specifically, we found that (1) AM angiosperms are less drought-tolerant than EcM angiosperms in wet regions or biomes, but AM gymnosperms are more drought-tolerant than EcM gymnosperms in dry regions or biomes, and (2) in both angiosperms and gymnosperms, variation in hydraulic traits as well as their sensitivity to water availability were higher in AM species than in EcM species. Our results suggest that global shifts in water availability (especially drought) may alter the biogeographic distribution and abundance of AM and EcM plants, with consequences for ecosystem element cycling and ultimately, the land carbon sink.

4.
Plant Cell Environ ; 47(9): 3561-3589, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38348610

RESUMEN

An exponential rise in the atmospheric vapour pressure deficit (VPD) is among the most consequential impacts of climate change in terrestrial ecosystems. Rising VPD has negative and cascading effects on nearly all aspects of plant function including photosynthesis, water status, growth and survival. These responses are exacerbated by land-atmosphere interactions that couple VPD to soil water and govern the evolution of drought, affecting a range of ecosystem services including carbon uptake, biodiversity, the provisioning of water resources and crop yields. However, despite the global nature of this phenomenon, research on how to incorporate these impacts into resilient management regimes is largely in its infancy, due in part to the entanglement of VPD trends with those of other co-evolving climate drivers. Here, we review the mechanistic bases of VPD impacts at a range of spatial scales, paying particular attention to the independent and interactive influence of VPD in the context of other environmental changes. We then evaluate the consequences of these impacts within key management contexts, including water resources, croplands, wildfire risk mitigation and management of natural grasslands and forests. We conclude with recommendations describing how management regimes could be altered to mitigate the otherwise highly deleterious consequences of rising VPD.


Asunto(s)
Cambio Climático , Ecosistema , Presión de Vapor , Agua/fisiología , Agua/metabolismo , Sequías
5.
Glob Chang Biol ; 30(8): e17474, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39162051

RESUMEN

Forests around the world are experiencing changes due to climate variability and human land use. How these changes interact and influence the vulnerability of forests are not well understood. In the eastern United States, well-documented anthropogenic disturbances and land-use decisions, such as logging and fire suppression, have influenced forest species assemblages, leading to a demographic shift from forests dominated by xeric species to those dominated by mesic species. Contemporarily, the climate has changed and is expected to continue to warm and produce higher evaporative demand, imposing stronger drought stress on forest communities. Here, we use an extensive network of tree-ring records from common hardwood species across ~100 sites and ~1300 trees in the eastern United States to examine the magnitude of growth response to both wet and dry climate extremes. We find that growth reductions during drought exceed the positive growth response to pluvials. Mesic species such as Liriodendron tulipifera and Acer saccharum, which are becoming more dominant, are more sensitive to drought than more xeric species, such as oaks (Quercus) and hickory (Carya), especially at moderate and extreme drought intensities. Although more extreme droughts produce a larger annual growth reduction, mild droughts resulted in the largest cumulative growth decreases due to their higher frequency. When using global climate model projections, all scenarios show drought frequency increasing substantially (3-9 times more likely) by 2100. Thus, the ongoing demographic shift toward more mesic species in the eastern United States combined with drier conditions results in larger drought-induced growth declines, suggesting that drought will have an even larger impact on aboveground carbon uptake in the future in the eastern United States.


Asunto(s)
Cambio Climático , Sequías , Bosques , Árboles , Árboles/crecimiento & desarrollo , Estados Unidos , Clima
7.
Plant Cell Environ ; 45(2): 329-346, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34902165

RESUMEN

The coordination of plant leaf water potential (ΨL ) regulation and xylem vulnerability to embolism is fundamental for understanding the tradeoffs between carbon uptake and risk of hydraulic damage. There is a general consensus that trees with vulnerable xylem more conservatively regulate ΨL than plants with resistant xylem. We evaluated if this paradigm applied to three important eastern US temperate tree species, Quercus alba L., Acer saccharum Marsh. and Liriodendron tulipifera L., by synthesizing 1600 ΨL observations, 122 xylem embolism curves and xylem anatomical measurements across 10 forests spanning pronounced hydroclimatological gradients and ages. We found that, unexpectedly, the species with the most vulnerable xylem (Q. alba) regulated ΨL less strictly than the other species. This relationship was found across all sites, such that coordination among traits was largely unaffected by climate and stand age. Quercus species are perceived to be among the most drought tolerant temperate US forest species; however, our results suggest their relatively loose ΨL regulation in response to hydrologic stress occurs with a substantial hydraulic cost that may expose them to novel risks in a more drought-prone future.


Asunto(s)
Acer/fisiología , Sequías , Liriodendron/fisiología , Quercus/fisiología , Agua/fisiología , Xilema/fisiología , Árboles/fisiología
8.
Glob Chang Biol ; 28(12): 3778-3794, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35253952

RESUMEN

Nature-based Climate Solutions (NbCS) are managed alterations to ecosystems designed to increase carbon sequestration or reduce greenhouse gas emissions. While they have growing public and private support, the realizable benefits and unintended consequences of NbCS are not well understood. At regional scales where policy decisions are often made, NbCS benefits are estimated from soil and tree survey data that can miss important carbon sources and sinks within an ecosystem, and do not reveal the biophysical impacts of NbCS for local water and energy cycles. The only direct observations of ecosystem-scale carbon fluxes, for example, by eddy covariance flux towers, have not yet been systematically assessed for what they can tell us about NbCS potentials, and state-of-the-art remote sensing products and land-surface models are not yet being widely used to inform NbCS policymaking or implementation. As a result, there is a critical mismatch between the point- and tree-scale data most often used to assess NbCS benefits and impacts, the ecosystem and landscape scales where NbCS projects are implemented, and the regional to continental scales most relevant to policymaking. Here, we propose a research agenda to confront these gaps using data and tools that have long been used to understand the mechanisms driving ecosystem carbon and energy cycling, but have not yet been widely applied to NbCS. We outline steps for creating robust NbCS assessments at both local to regional scales that are informed by ecosystem-scale observations, and which consider concurrent biophysical impacts, future climate feedbacks, and the need for equitable and inclusive NbCS implementation strategies. We contend that these research goals can largely be accomplished by shifting the scales at which pre-existing tools are applied and blended together, although we also highlight some opportunities for more radical shifts in approach.


Asunto(s)
Cambio Climático , Ecosistema , Carbono , Secuestro de Carbono , Clima , Árboles , Estados Unidos
10.
New Phytol ; 229(5): 2562-2575, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33118166

RESUMEN

●Plants are characterized by the iso/anisohydry continuum depending on how they regulate leaf water potential (ΨL ). However, how iso/anisohydry changes over time in response to year-to-year variations in environmental dryness and how such responses vary across different regions remains poorly characterized. ●We investigated how dryness, represented by aridity index, affects the interannual variability of ecosystem iso/anisohydry at the regional scale, estimated using satellite microwave vegetation optical depth (VOD) observations. This ecosystem-level analysis was further complemented with published field observations of species-level ΨL . ●We found different behaviors in the directionality and sensitivity of isohydricity (σ) with respect to the interannual variation of dryness in different ecosystems. These behaviors can largely be differentiated by the average dryness of the ecosystem itself: in mesic ecosystems, σ decreases in drier years with a higher sensitivity to dryness; in xeric ecosystems, σ increases in drier years with a lower sensitivity to dryness. These results were supported by the species-level synthesis. ●Our study suggests that how plants adjust their water use across years - as revealed by their interannual variability in isohydricity - depends on the dryness of plants' living environment. This finding advances our understanding of plant responses to drought at regional scales.


Asunto(s)
Sequías , Ecosistema , Hojas de la Planta , Plantas , Agua
11.
Glob Chang Biol ; 27(23): 6005-6024, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34478589

RESUMEN

Droughts in a warming climate have become more common and more extreme, making understanding forest responses to water stress increasingly pressing. Analysis of water stress in trees has long focused on water potential in xylem and leaves, which influences stomatal closure and water flow through the soil-plant-atmosphere continuum. At the same time, changes of vegetation water content (VWC) are linked to a range of tree responses, including fluxes of water and carbon, mortality, flammability, and more. Unlike water potential, which requires demanding in situ measurements, VWC can be retrieved from remote sensing measurements, particularly at microwave frequencies using radar and radiometry. Here, we highlight key frontiers through which VWC has the potential to significantly increase our understanding of forest responses to water stress. To validate remote sensing observations of VWC at landscape scale and to better relate them to data assimilation model parameters, we introduce an ecosystem-scale analog of the pressure-volume curve, the non-linear relationship between average leaf or branch water potential and water content commonly used in plant hydraulics. The sources of variability in these ecosystem-scale pressure-volume curves and their relationship to forest response to water stress are discussed. We further show to what extent diel, seasonal, and decadal dynamics of VWC reflect variations in different processes relating the tree response to water stress. VWC can also be used for inferring belowground conditions-which are difficult to impossible to observe directly. Lastly, we discuss how a dedicated geostationary spaceborne observational system for VWC, when combined with existing datasets, can capture diel and seasonal water dynamics to advance the science and applications of global forest vulnerability to future droughts.


Asunto(s)
Sequías , Ecosistema , Bosques , Hojas de la Planta , Árboles , Xilema
12.
Environ Sci Technol ; 55(6): 3494-3504, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33660506

RESUMEN

Eddy covariance measurement systems provide direct observation of the exchange of greenhouse gases between ecosystems and the atmosphere, but have only occasionally been intentionally applied to quantify the carbon dynamics associated with specific climate mitigation strategies. Natural climate solutions (NCS) harness the photosynthetic power of ecosystems to avoid emissions and remove atmospheric carbon dioxide (CO2), sequestering it in biological carbon pools. In this perspective, we aim to determine which kinds of NCS strategies are most suitable for ecosystem-scale flux measurements and how these measurements should be deployed for diverse NCS scales and goals. We find that ecosystem-scale flux measurements bring unique value when assessing NCS strategies characterized by inaccessible and hard-to-observe carbon pool changes, important non-CO2 greenhouse gas fluxes, the potential for biophysical impacts, or dynamic successional changes. We propose three deployment types for ecosystem-scale flux measurements at various NCS scales to constrain wide uncertainties and chart a workable path forward: "pilot", "upscale", and "monitor". Together, the integration of ecosystem-scale flux measurements by the NCS community and the prioritization of NCS measurements by the flux community, have the potential to improve accounting in ways that capture the net impacts, unintended feedbacks, and on-the-ground specifics of a wide range of emerging NCS strategies.


Asunto(s)
Ecosistema , Gases de Efecto Invernadero , Dióxido de Carbono/análisis , Clima , Cambio Climático
13.
Oecologia ; 197(4): 971-988, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33677772

RESUMEN

Biogenic volatile organic compounds (BVOCs) play critical roles in ecological and earth-system processes. Ecosystem BVOC models rarely include soil and litter fluxes and their accuracy is often challenged by BVOC dynamics during periods of rapid ecosystem change like spring leaf out. We measured BVOC concentrations within the air space of a mixed deciduous forest and used a hybrid Lagrangian/Eulerian canopy transport model to estimate BVOC flux from the forest floor, canopy, and whole ecosystem during spring. Canopy flux measurements were dominated by a large methanol source and small isoprene source during the leaf-out period, consistent with past measurements of leaf ontogeny and theory, and indicative of a BVOC flux situation rarely used in emissions model testing. The contribution of the forest floor to whole-ecosystem BVOC flux is conditional on the compound of interest and is often non-trivial. We created linear models of forest floor, canopy, and whole-ecosystem flux for each study compound and used information criteria-based model selection to find the simplest model with the best fit. Most published BVOC flux models do not include vapor pressure deficit (VPD), but it entered the best canopy, forest floor, and whole-ecosystem BVOC flux model more than any other study variable in the present study. Since VPD is predicted to increase in the future, future studies should investigate how it contributes to BVOC flux through biophysical mechanisms like evaporative demand, leaf temperature and stomatal function.


Asunto(s)
Compuestos Orgánicos Volátiles , Ecosistema , Bosques , Estaciones del Año , Árboles , Presión de Vapor
14.
New Phytol ; 226(6): 1550-1566, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32064613

RESUMEN

Recent decades have been characterized by increasing temperatures worldwide, resulting in an exponential climb in vapor pressure deficit (VPD). VPD has been identified as an increasingly important driver of plant functioning in terrestrial biomes and has been established as a major contributor in recent drought-induced plant mortality independent of other drivers associated with climate change. Despite this, few studies have isolated the physiological response of plant functioning to high VPD, thus limiting our understanding and ability to predict future impacts on terrestrial ecosystems. An abundance of evidence suggests that stomatal conductance declines under high VPD and transpiration increases in most species up until a given VPD threshold, leading to a cascade of subsequent impacts including reduced photosynthesis and growth, and higher risks of carbon starvation and hydraulic failure. Incorporation of photosynthetic and hydraulic traits in 'next-generation' land-surface models has the greatest potential for improved prediction of VPD responses at the plant- and global-scale, and will yield more mechanistic simulations of plant responses to a changing climate. By providing a fully integrated framework and evaluation of the impacts of high VPD on plant function, improvements in forecasting and long-term projections of climate impacts can be made.


Asunto(s)
Estomas de Plantas , Transpiración de Plantas , Ecosistema , Hojas de la Planta , Presión de Vapor , Agua
15.
Glob Chang Biol ; 26(6): 3384-3401, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32145125

RESUMEN

Land-use/cover change (LUCC) is an important driver of environmental change, occurring at the same time as, and often interacting with, global climate change. Reforestation and deforestation have been critical aspects of LUCC over the past two centuries and are widely studied for their potential to perturb the global carbon cycle. More recently, there has been keen interest in understanding the extent to which reforestation affects terrestrial energy cycling and thus surface temperature directly by altering surface physical properties (e.g., albedo and emissivity) and land-atmosphere energy exchange. The impacts of reforestation on land surface temperature and their mechanisms are relatively well understood in tropical and boreal climates, but the effects of reforestation on warming and/or cooling in temperate zones are less certain. This study is designed to elucidate the biophysical mechanisms that link land cover and surface temperature in temperate ecosystems. To achieve this goal, we used data from six paired eddy-covariance towers over co-located forests and grasslands in the temperate eastern United States, where radiation components, latent and sensible heat fluxes, and meteorological conditions were measured. The results show that, at the annual time scale, the surface of the forests is 1-2°C cooler than grasslands, indicating a substantial cooling effect of reforestation. The enhanced latent and sensible heat fluxes of forests have an average cooling effect of -2.5°C, which offsets the net warming effect (+1.5°C) of albedo warming (+2.3°C) and emissivity cooling effect (-0.8°C) associated with surface properties. Additional daytime cooling over forests is driven by local feedbacks to incoming radiation. We further show that the forest cooling effect is most pronounced when land surface temperature is higher, often exceeding -5°C. Our results contribute important observational evidence that reforestation in the temperate zone offers opportunities for local climate mitigation and adaptation.


Asunto(s)
Ecosistema , Bosques , Atmósfera , Cambio Climático , Temperatura
16.
New Phytol ; 222(4): 1862-1872, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30664253

RESUMEN

The isohydry-anisohydry spectrum has become a popular way to characterize plant drought responses and recovery processes. Despite the proven utility of this framework for understanding the interconnected physiological changes plants undergo in response to water stress, new challenges have arisen pertaining to the traits and tradeoffs that underlie this concept. To test the utility of this framework for understanding hydraulic traits, drought physiology and recovery, we applied a 6 wk experimental soil moisture reduction to seven tree species followed by a 6 wk recovery period. Throughout, we measured hydraulic traits and monitored changes in gas exchange, leaf water potential, and hydraulic conductivity. Species' hydraulic traits were not coordinated, as some anisohydric species had surprisingly low resistance to embolism (P50 ) and negative safety margins. In addition to widespread hydraulic damage, these species also experienced reductions in photosynthesis and stem water potential during water stress, and delayed recovery time. Given that we observed no benefit of being anisohydric either during or after drought, our results indicate the need to reconsider the traits and tradeoffs that underlie anisohydric behavior, and to consider the environmental, biological and edaphic processes that could allow this strategy to flourish in forests.


Asunto(s)
Sequías , Estomas de Plantas/fisiología , Árboles/fisiología , Agua , Tallos de la Planta/fisiología , Especificidad de la Especie
17.
New Phytol ; 221(1): 195-208, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30117538

RESUMEN

Species-specific responses of plant intrinsic water-use efficiency (iWUE) to multiple environmental drivers associated with climate change, including soil moisture (θ), vapor pressure deficit (D), and atmospheric CO2 concentration (ca ), are poorly understood. We assessed how the iWUE and growth of several species of deciduous trees that span a gradient of isohydric to anisohydric water-use strategies respond to key environmental drivers (θ, D and ca ). iWUE was calculated for individual tree species using leaf-level gas exchange and tree-ring δ13 C in wood measurements, and for the whole forest using the eddy covariance method. The iWUE of the isohydric species was generally more sensitive to environmental change than the anisohydric species was, and increased significantly with rising D during the periods of water stress. At longer timescales, the influence of ca was pronounced for isohydric tulip poplar but not for others. Trees' physiological responses to changing environmental drivers can be interpreted differently depending on the observational scale. Care should be also taken in interpreting observed or modeled trends in iWUE that do not explicitly account for the influence of D.


Asunto(s)
Árboles/fisiología , Agua/metabolismo , Carbono/metabolismo , Dióxido de Carbono , Isótopos de Carbono/análisis , Cambio Climático , Sequías , Bosques , Indiana , Hojas de la Planta/metabolismo , Suelo/química , Análisis Espacio-Temporal , Especificidad de la Especie , Presión de Vapor
18.
Plant Cell Environ ; 42(6): 1802-1815, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30632172

RESUMEN

Over the past decade, the concept of isohydry or anisohydry, which describes the link between soil water potential (ΨS ), leaf water potential (ΨL ), and stomatal conductance (gs ), has soared in popularity. However, its utility has recently been questioned, and a surprising lack of coordination between the dynamics of ΨL and gs across biomes has been reported. Here, we offer a more expanded view of the isohydricity concept that considers effects of vapour pressure deficit (VPD) and leaf area index (AL ) on the apparent sensitivities of ΨL and gs to drought. After validating the model with tree- and ecosystem-scale data, we find that within a site, isohydricity is a strong predictor of limitations to stomatal function, though variation in VPD and leaf area, among other factors, can challenge its diagnosis. Across sites, the theory predicts that the degree of isohydricity is a good predictor of the sensitivity of gs to declining soil water in the absence of confounding effects from other drivers. However, if VPD effects are significant, they alone are sufficient to decouple the dynamics of ΨL and gs entirely. We conclude with a set of practical recommendations for future applications of the isohydricity framework within and across sites.


Asunto(s)
Atmósfera/química , Hojas de la Planta/fisiología , Transpiración de Plantas , Suelo/química , Agua/química , Simulación por Computador , Sequías , Ecosistema , Modelos Biológicos , Hojas de la Planta/química , Estomas de Plantas/química , Estomas de Plantas/fisiología , Presión de Vapor
19.
Glob Chang Biol ; 25(9): 2978-2992, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31132225

RESUMEN

Severe drought can cause lagged effects on tree physiology that negatively impact forest functioning for years. These "drought legacy effects" have been widely documented in tree-ring records and could have important implications for our understanding of broader scale forest carbon cycling. However, legacy effects in tree-ring increments may be decoupled from ecosystem fluxes due to (a) postdrought alterations in carbon allocation patterns; (b) temporal asynchrony between radial growth and carbon uptake; and (c) dendrochronological sampling biases. In order to link legacy effects from tree rings to whole forests, we leveraged a rich dataset from a Midwestern US forest that was severely impacted by a drought in 2012. At this site, we compiled tree-ring records, leaf-level gas exchange, eddy flux measurements, dendrometer band data, and satellite remote sensing estimates of greenness and leaf area before, during, and after the 2012 drought. After accounting for the relative abundance of tree species in the stand, we estimate that legacy effects led to ~10% reductions in tree-ring width increments in the year following the severe drought. Despite this stand-scale reduction in radial growth, we found that leaf-level photosynthesis, gross primary productivity (GPP), and vegetation greenness were not suppressed in the year following the 2012 drought. Neither temporal asynchrony between radial growth and carbon uptake nor sampling biases could explain our observations of legacy effects in tree rings but not in GPP. Instead, elevated leaf-level photosynthesis co-occurred with reduced leaf area in early 2013, indicating that resources may have been allocated away from radial growth in conjunction with postdrought upregulation of photosynthesis and repair of canopy damage. Collectively, our results indicate that tree-ring legacy effects were not observed in other canopy processes, and that postdrought canopy allocation could be an important mechanism that decouples tree-ring signals from GPP.


Asunto(s)
Sequías , Ecosistema , Bosques , Fotosíntesis , Hojas de la Planta
20.
Agric For Meteorol ; 252: 269-282, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-32280152

RESUMEN

Increasing air temperature is expected to extend growing season length in temperate, broadleaf forests, leading to potential increases in evapotranspiration and net carbon uptake. However, other key processes affecting water and carbon cycles are also highly temperature-dependent. Warmer temperatures may result in higher ecosystem carbon loss through respiration and higher potential evapotranspiration through increased atmospheric demand for water. Thus, the net effects of a warming planet are uncertain and highly dependent on local climate and vegetation. We analyzed five years of data from the Coweeta eddy covariance tower in the southern Appalachian Mountains of western North Carolina, USA, a highly productive region that has historically been underrepresented in flux observation networks. We examined how leaf phenology and climate affect water and carbon cycling in a mature forest in one of the wettest biomes in North America. Warm temperatures in early 2012 caused leaf-out to occur two weeks earlier than in cooler years and led to higher seasonal carbon uptake. However, these warmer temperatures also drove higher winter ecosystem respiration, offsetting much of the springtime carbon gain. Interannual variability in net carbon uptake was high (147 to 364 g C m-2 y-1), but unrelated to growing season length. Instead, years with warmer growing seasons had 10% higher respiration and sequestered ~40% less carbon than cooler years. In contrast, annual evapotranspiration was relatively consistent among years (coefficient of variation = 4%) despite large differences in precipitation (17%, range = 800 mm). Transpiration by the evergreen understory likely helped to compensate for phenologically-driven differences in canopy transpiration. The increasing frequency of high summer temperatures is expected to have a greater effect on respiration than growing season length, reducing forest carbon storage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA