Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Biol Evol ; 40(6)2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37279919

RESUMEN

Toll-like receptors (TLRs) are the most widespread class of membrane-bound innate immune receptors, responsible of specific pathogen recognition and production of immune effectors through the activation of intracellular signaling cascades. The repertoire of TLRs was analyzed in 85 metazoans, enriched on molluscan species, an underrepresented phylum in previous studies. Following an ancient evolutionary origin, suggested by the presence of TLR genes in Anthozoa (Cnidaria), these receptors underwent multiple independent gene family expansions, the most significant of which occurred in bivalve molluscs. Marine mussels (Mytilus spp.) had the largest TLR repertoire in the animal kingdom, with evidence of several lineage-specific expanded TLR subfamilies with different degrees of orthology conservation within bivalves. Phylogenetic analyses revealed that bivalve TLR repertoires were more diversified than their counterparts in deuterostomes or ecdysozoans. The complex evolutionary history of TLRs, characterized by lineage-specific expansions and losses, along with episodic positive selection acting on the extracellular recognition domains, suggests that functional diversification might be a leading evolutionary force. We analyzed a comprehensive transcriptomic data set from Mytilus galloprovincialis and built transcriptomic correlation clusters with the TLRs expressed in gills and in hemocytes. The implication of specific TLRs in different immune pathways was evidenced, as well as their specific modulation in response to different biotic and abiotic stimuli. We propose that, in a similar fashion to the remarkable functional specialization of vertebrate TLRs, the expansion of the TLR gene family in bivalves attends to a functional specification motivated by the biological particularities of these organisms and their living environment.


Asunto(s)
Bivalvos , Evolución Molecular , Animales , Filogenia , Receptores Toll-Like , Transducción de Señal , Bivalvos/genética
2.
Fish Shellfish Immunol ; 147: 109456, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38369070

RESUMEN

Aeromonas salmonicida is one of the most harmful pathogens in finfish aquaculture worldwide. Immunostimulants such as ß-glucans are used to enhance the immunity of cultured fish. However, their effects on fish physiology are not completely understood. In the present work, we evaluated the effect of a single intraperitoneal (ip) injection of zymosan A on fish survival against A. salmonicida infection. A single administration of this compound protected fish against A. salmonicida challenge and reduce the bacterial load in the head kidney one week after its administration. Transcriptome analyses of head kidney samples revealed several molecular mechanisms involved in the protection conferred by zymosan A and their regulation by long noncoding RNAs. The transcriptome profile of turbot exposed only to zymosan A was practically unaltered one week after ip injection. However, the administration of this immunostimulant induced significant transcriptomic changes once the fish were in contact with the bacteria and increased the survival of the infected turbot. Our results suggest that the restraint of the infection-induced inflammatory response, the management of apoptotic cell death, cell plasticity and cellular processes involving cytoskeleton dynamics support the protective effects of zymosan A. All this information provides insights on the cellular and molecular mechanisms involved in the protective effects of this widely used immunostimulant.


Asunto(s)
Aeromonas salmonicida , Enfermedades de los Peces , Peces Planos , Infecciones por Bacterias Gramnegativas , ARN Largo no Codificante , Animales , Zimosan , Aeromonas salmonicida/fisiología , Inflamación , Perfilación de la Expresión Génica , Adyuvantes Inmunológicos
3.
Fish Shellfish Immunol ; 134: 108588, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36740080

RESUMEN

Gilthead sea bream (Sparus aurata) is considered an asymptomatic carrier for the nodavirus genotype affecting European sea bass (Dicentrarchus labrax), RGNNV. Only larvae and juveniles of sea bream have been found to be susceptible to the RGNNV/SJNNV reassortant. Nevertheless, the molecular bases of the high resistance of sea bream against RGNNV are not known, and the overall transcriptome response to the virus remains unexplored. In this work, we conducted the first RNA-Seq analysis of sea bream infected with RGNNV to elucidate the immune mechanisms involved in their resistance. Since we recently published the transcriptome response of sea bass infected with RGNNV, we wanted to take the same tissues (brain and head kidney) at the same time points (24 and 72 h postinfection) to conduct comparative analyses. Sea bream responded to RGNNV challenge with a powerful immune arsenal characterized by the high expression of a multitude of type I interferon-related genes, immune receptors and antigen presentation-related genes in both tissues. Moreover, complement-, coagulation- and angiogenesis-related genes were highly enriched in the head kidney at the earlier sampling point. Interestingly, despite the strong immune response found in the brain, inflammation seems to have been restrained, resulting in a neuroprotective scenario. While the response in sea bass was characterized by the activation of the stress axis, which could lead to immunosuppression and neuronal damage, genes involved in these processes were not modulated in sea bream. An efficient antiviral response accompanied by low inflammation and the absence of stimulation of the stress response seem to play a role in the success of sea bream in resisting RGNNV infection.


Asunto(s)
Lubina , Enfermedades de los Peces , Perciformes , Dorada , Animales , Genotipo , Inflamación , Análisis de Secuencia de ARN
4.
Fish Shellfish Immunol ; 136: 108735, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37044187

RESUMEN

As filter-feeding bivalves, mussels have been traditionally studied as possible vectors of different bacterial or viral pathogens. The absence of a known viral pathogen in these bivalves makes it particularly interesting to study the interaction of the mussel innate immune system with a virus of interest. In the present work, mussels were challenged with viral haemorrhagic septicaemia virus (VHSV), which is a pathogen in several fish species. The viral load was eliminated after 24 h and mussels evidenced antiviral activity towards VHSV, demonstrating that the virus was recognized and eliminated by the immune system of the host and confirming that mussels are not VHSV vectors in the marine environment. The transcriptome activating the antiviral response was studied, revealing the involvement of cytoplasmic viral sensors with the subsequent activation of the JAK-STAT pathway and several downstream antiviral effectors. The inflammatory response was inhibited with the profound downregulation of MyD88, shifting the immune balance towards antiviral functions. High modulation of retrotransposon activity was observed, revealing a mechanism that facilitates the antiviral response and that had not been previously observed in these species. The expression of several inhibitors of apoptosis and apoptosis-promoting genes was modulated, although clear inhibition of apoptosis in bivalves after severe viral infection and subsequent disease was not observed in this study. Finally, the modulated expression of several long noncoding RNAs that were correlated with genes involved in the immune response was detected.


Asunto(s)
Enfermedades de los Peces , Septicemia Hemorrágica Viral , Novirhabdovirus , Animales , Transcriptoma , Quinasas Janus , Factores de Transcripción STAT , Transducción de Señal , Novirhabdovirus/fisiología , Antivirales/farmacología
5.
Mar Drugs ; 21(4)2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37103393

RESUMEN

C-type lectins belong to a widely conserved family of lectins characterized in Metazoa. They show important functional diversity and immune implications, mainly as pathogen recognition receptors. In this work, C-type lectin-like proteins (CTLs) of a set of metazoan species were analyzed, revealing an important expansion in bivalve mollusks, which contrasted with the reduced repertoires of other mollusks, such as cephalopods. Orthology relationships demonstrated that these expanded repertoires consisted of CTL subfamilies conserved within Mollusca or Bivalvia and of lineage-specific subfamilies with orthology only between closely related species. Transcriptomic analyses revealed the importance of the bivalve subfamilies in mucosal immunity, as they were mainly expressed in the digestive gland and gills and modulated with specific stimuli. CTL domain-containing proteins that had additional domains (CTLDcps) were also studied, revealing interesting gene families with different conservation degrees of the CTL domain across orthologs from different taxa. Unique bivalve CTLDcps with specific domain architectures were revealed, corresponding to uncharacterized bivalve proteins with putative immune function according to their transcriptomic modulation, which could constitute interesting targets for functional characterization.


Asunto(s)
Bivalvos , Lectinas Tipo C , Animales , Lectinas Tipo C/genética , Transcriptoma/genética , Bivalvos/genética , Genómica , Genoma/genética , Filogenia
6.
Mar Drugs ; 20(6)2022 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-35736166

RESUMEN

The high proliferation of microorganisms in aquatic environments has allowed their coevolution for billions of years with other living beings that also inhabit these niches. Among the different existing types of interaction, the eternal competition for supremacy between the susceptible species and their pathogens has selected, as part of the effector division of the immune system of the former ones, a vast and varied arsenal of efficient antimicrobial molecules, which is highly amplified by the broad biodiversity radiated, above any others, at the marine habitats. At present, the great recent scientific and technological advances already allow the massive discovery and exploitation of these defense compounds for therapeutic purposes against infectious diseases of our interest. Among them, antimicrobial peptides and antimicrobial metabolites stand out because of the wide dimensions of their structural diversities, mechanisms of action, and target pathogen ranges. This revision work contextualizes the research in this field and serves as a presentation and scope identification of the Special Issue from Marine Drugs journal "The Immune System of Marine Organisms as Source for Drugs against Infectious Diseases".


Asunto(s)
Antiinfecciosos , Enfermedades Transmisibles , Antibacterianos/química , Antiinfecciosos/farmacología , Antiinfecciosos/uso terapéutico , Organismos Acuáticos/química , Enfermedades Transmisibles/tratamiento farmacológico , Humanos , Sistema Inmunológico
7.
Int J Mol Sci ; 23(24)2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36555669

RESUMEN

Metatranscriptomics has emerged as a very useful technology for the study of microbiomes from RNA-seq reads. This method provides additional information compared to the sequencing of ribosomal genes because the gene expression can also be analysed. In this work, we used the metatranscriptomic approach to study the whole microbiome of mussels, including bacteria, viruses, fungi, and protozoans, by mapping the RNA-seq reads to custom assembly databases (including the genomes of microorganisms publicly available). This strategy allowed us not only to describe the diversity of microorganisms but also to relate the host transcriptome and microbiome, finding the genes more affected by the pathogen load. Although some bacteria abundant in the metatranscriptomic analysis were undetectable by 16S rRNA sequencing, a common core of the taxa was detected by both methodologies (62% of the metatranscriptomic detections were also identified by 16S rRNA sequencing, the Oceanospirillales, Flavobacteriales and Vibrionales orders being the most relevant). However, the differences in the microbiome composition were observed among different tissues of Mytilus galloprovincialis, with the fungal kingdom being especially diverse, or among molluscan species. These results confirm the potential of a meta-analysis of transcriptome data to obtain new information on the molluscs' microbiome.


Asunto(s)
Microbiota , Animales , Bacterias/genética , Microbiota/genética , Moluscos/genética , Filogenia , ARN Ribosómico 16S/genética
8.
Int J Mol Sci ; 22(6)2021 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-33810127

RESUMEN

Mytimycins are cysteine-rich antimicrobial peptides that show antifungal properties. These peptides are part of the immune network that constitutes the defense system of the Mediterranean mussel (Mytilus galloprovincialis). The immune system of mussels has been increasingly studied in the last decade due to its great efficiency, since these molluscs, particularly resistant to adverse conditions and pathogens, are present all over the world, being considered as an invasive species. The recent sequencing of the mussel genome has greatly simplified the genetic study of some of its immune genes. In the present work, we describe a total of 106 different mytimycin variants in 16 individual mussel genomes. The 13 highly supported mytimycin clusters (A-M) identified with phylogenetic inference were found to be subject to the presence/absence variation, a widespread phenomenon in mussels. We also identified a block of conserved residues evolving under purifying selection, which may indicate the "functional core" of the mature peptide, and a conserved set of 10 invariable plus 6 accessory cysteines which constitute a plastic disulfide array. Finally, we extended the taxonomic range of distribution of mytimycins among Mytilida, identifying novel sequences in M. coruscus, M. californianus, P. viridis, L. fortunei, M. philippinarum, M. modiolus, and P. purpuratus.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/genética , Genoma , Genómica , Mytilus/genética , Secuencia de Aminoácidos , Animales , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/clasificación , Perfilación de la Expresión Génica , Punto Isoeléctrico , Sistemas de Lectura Abierta , Filogenia , Regiones Promotoras Genéticas , Isoformas de Proteínas , Transcriptoma
9.
Vet Res ; 51(1): 64, 2020 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-32398117

RESUMEN

Nodavirus, or nervous necrosis virus (NNV), is the causative agent of viral encephalopathy and retinopathy (VER), a severe disease affecting numerous fish species worldwide. European sea bass, a cultured species of great economic importance, is highly susceptible to the disease. To better understand the response of this organism to NNV, we conducted RNA-Seq analysis of the brain and head kidney from experimentally infected and uninfected sea bass juveniles at 24 and 72 hours post-infection (hpi). Contrary to what was expected, we observed modest modulation of immune-related genes in the brain, the target organ of this virus, and some of these genes were even downregulated. However, genes involved in the stress response showed extremely high modulation. Accordingly, the genes encoding the enzymes implicated in the synthesis of cortisol were almost the only overexpressed genes in the head kidney at 24 hpi. This stress response was attenuated after 72 h in both tissues, and a progressive immune response against the virus was mounted. Moreover, experiments were conducted to determine how stress activation could impact NNV replication. Our results show the complex interplay between viral activity, the stress reaction and the immune response.


Asunto(s)
Lubina , Enfermedades de los Peces/inmunología , Proteínas de Peces/metabolismo , Inmunidad Innata/genética , Infecciones por Virus ARN/veterinaria , Animales , Encéfalo/metabolismo , Enfermedades de los Peces/virología , Riñón Cefálico/metabolismo , Nodaviridae/fisiología , Infecciones por Virus ARN/inmunología , Infecciones por Virus ARN/virología , RNA-Seq/veterinaria , Estrés Fisiológico/genética
10.
Fish Shellfish Immunol ; 99: 86-98, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32004617

RESUMEN

PIM kinases are a family of serine/threonine protein kinases that potentiate the progression of the cell cycle and inhibit apoptosis. Because of this, they are considered to be proto-oncogenes, and they represent an interesting target for the development of anticancer drugs. In mammals, three PIM kinases exist (PIM-1, PIM-2 and PIM-3), and different inhibitors have been developed to block their activity. In addition to their involvement in cancer, some publications have reported that the PIM kinases have pro-viral activity, and different mechanisms where PIM kinases favour viral infections have been proposed. Zebrafish possess more than 300 Pim kinase members in their genome, and by using RNA-Seq analysis, we found a high number of Pim kinase genes that were significantly induced after infection with spring viraemia of carp virus (SVCV). Moreover, analysis of the miRNAs modulated by this infection revealed that some of them could be involved in the post-transcriptional regulation of Pim kinase abundance. To elucidate the potential role of the 16 overexpressed Pim kinases in the infectivity of SVCV, we used three different pan-PIM kinase inhibitors (SGI-1776, INCB053914 and AZD1208), and different experiments were conducted both in vitro and in vivo. We observed that the PIM kinase inhibitors had a protective effect against SVCV, indicating that, similar to what is observed in mammals, PIM kinases are beneficial for the virus in zebrafish. Moreover, zebrafish Pim kinases seem to facilitate viral entry into the host cells because when ZF4 cells were pre-incubated with the virus and then were treated with the inhibitors, the protective effect of the inhibitors was abrogated. Although more investigation is necessary, these results show that pan-PIM kinase inhibitors could serve as a useful treatment for preventing the spread of viral diseases.


Asunto(s)
Riñón/enzimología , Proteínas Proto-Oncogénicas c-pim-1/genética , Infecciones por Rhabdoviridae/veterinaria , Internalización del Virus/efectos de los fármacos , Pez Cebra/virología , Animales , Apoptosis , Compuestos de Bifenilo/farmacología , Línea Celular , Proliferación Celular/efectos de los fármacos , Imidazoles/farmacología , Riñón/virología , Poli I-C/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-pim-1/antagonistas & inhibidores , Piridazinas/farmacología , RNA-Seq , Rhabdoviridae , Tiazolidinas/farmacología , Pez Cebra/anatomía & histología
11.
J Virol ; 92(11)2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29563289

RESUMEN

In this study, we have characterized quasispecies dynamics and the evolution of viral tropism in naive HIV-1-infected patients treated with a short course of maraviroc monotherapy (ClinicalTrials.gov registration no. NCT01060618) independently of the tropism of the infecting virus. We randomly selected 20 patients infected with viruses displaying different basal tropisms-10 carrying R5 and 10 carrying dual/mixed X4 (DM/X4) viruses-at recruitment as determined by phenotypic assay (Trofile). Evolution of viral quasiespecies at the end of treatment was determined by ultradeep sequencing of the V3 region using a 454 Life Sciences Platform and geno2pheno (g2p) algorithm for viral tropism prediction. The false-positive rate (FPR) that defines the probability of classifying an R5 virus falsely as X4 was set at 10%. X4-specific HIV-1 viral load (VL) was calculated from sequences with an FPR of <3.75%. Virological response as defined as >1-log10 copies/ml reduction in VL was detected in 70% of patients independently of the basal tropism of the infecting virus. Viral tropism remained stable, and nonsignificant differences in FPR values before and after treatment were found for the majority of patients in both tropism groups. Only three patients (one with R5 and two with DM/X4 viruses) showed an increased (>1 log) X4 VL, and one patient harboring a DM/X4-tropic virus displayed a significant reduction in FPR values at the end of treatment. Fast changes in the composition of viral populations were observed in all patients after 10 days of maraviroc (MVC) monotherapy treatment, and a complete replacement of viral quasiespecies was found in 3/10 patients carrying R5-using viruses and 4/10 patients carrying DM/X4-using viruses.IMPORTANCE Initiation of treatment with maraviroc requires previous determination of viral tropism by genotypic or phenotypic methods because of the risk of treatment failure and selection of DM/X4-tropic variants. In this study, we confirm previous work showing that the virologic response to maraviroc is independent of basal tropism. By deep-sequencing analysis, we determined that fast changes in viral populations were due to the emergence of minority variants in some patients whereas in others generation of new strains was detected. The risk of DM/X4 selection was very low as FPR values remained stable, and only one patient showed a detrimental switch to DM/X4 variants. Our data show that some DM/X4 viruses are sensitive to maraviroc treatment probably because only a low proportion of DM/X4 viruses use preferentially the X4 receptor and contain authentically maraviroc-resistant viruses that are not accurately detected by current assays.


Asunto(s)
Fármacos Anti-VIH/uso terapéutico , Ciclohexanos/uso terapéutico , Infecciones por VIH/tratamiento farmacológico , VIH-1/efectos de los fármacos , VIH-1/genética , Triazoles/uso terapéutico , Tropismo Viral/genética , Adulto , Antagonistas de los Receptores CCR5/farmacología , Femenino , Infecciones por VIH/virología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Maraviroc , Persona de Mediana Edad , Receptores CCR5/metabolismo , Receptores CXCR4/metabolismo , Adulto Joven
12.
J Virol ; 92(9)2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29444937

RESUMEN

Maraviroc is a CCR5 antagonist used in the treatment of HIV-1 infection. We and others have suggested that maraviroc could reactivate latent HIV-1. To test the latency-reversing potential of maraviroc and the mechanisms involved, we performed a phase II, single-center, open-label study in which maraviroc was administered for 10 days to 20 HIV-1-infected individuals on suppressive antiretroviral therapy (EudraCT registration no. 2012-003215-66). All patients completed full maraviroc dosing and follow-up. The primary endpoint was to study whether maraviroc may reactivate HIV-1 latency, eliciting signaling pathways involved in the viral reactivation. An increase in HIV-1 transcription in resting CD4+ T cells, estimated by levels of HIV-1 unspliced RNA, was observed. Moreover, activation of the NF-κB transcription factor was observed in these cells. To elucidate the mechanism of NF-κB activation by maraviroc, we have evaluated in HeLa P4 C5 cells, which stably express CCR5, whether maraviroc could be acting as a partial CCR5 agonist, with no other mechanisms or pathways involved. Our results show that maraviroc can induce NF-κB activity and that NF-κB targets gene expression by CCR5 binding, since the use of TAK779, a CCR5 inhibitor, blocked NF-κB activation and functionality. Taking the results together, we show that maraviroc may have a role in the activation of latent virus transcription through the activation of NF-κB as a result of binding CCR5. Our results strongly support a novel use of maraviroc as a potential latency reversal agent in HIV-1-infected patients.IMPORTANCE HIV-1 persistence in a small pool of long-lived latently infected resting CD4+ T cells is a major barrier to viral eradication in HIV-1-infected patients on antiretroviral therapy. A potential strategy to cure HIV-1-infection is the use of latency-reversing agents to eliminate the reservoirs established in resting CD4+ T cells. As no drug has been shown to be completely effective so far, the search for new drugs and combinations remains a priority for HIV cure. We examined the ability of maraviroc, a CCR5 antagonist used as an antiretroviral drug, to activate latent HIV-1 in infected individuals on antiretroviral therapy. The study showed that maraviroc can activate NF-κB and, subsequently, induce latent HIV-1-transcription in resting CD4+ T cells from HIV-1-infected individuals on suppressive antiretroviral therapy. Additional interventions will be needed to eliminate latent HIV-1 infection. Our results suggest that maraviroc may be a new latency-reversing agent to interfere with HIV-1 persistence during antiretroviral therapy.


Asunto(s)
Antirretrovirales/uso terapéutico , Linfocitos T CD4-Positivos/inmunología , Infecciones por VIH/virología , VIH-1/inmunología , Maraviroc/uso terapéutico , FN-kappa B/metabolismo , Activación Viral/efectos de los fármacos , Latencia del Virus/efectos de los fármacos , Adulto , Anciano , Antagonistas de los Receptores CCR5/uso terapéutico , Linfocitos T CD4-Positivos/efectos de los fármacos , Femenino , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/inmunología , VIH-1/efectos de los fármacos , Humanos , Masculino , Persona de Mediana Edad , FN-kappa B/genética , Transducción de Señal , Replicación Viral
13.
Fish Shellfish Immunol ; 90: 150-164, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31028897

RESUMEN

Interferon-gamma (IFN-ϒ) is probably one of the most relevant cytokines orchestrating the immune response in vertebrates. Although the activities mediated by this molecule are well known in mammals, several aspects of the IFN-ϒ system in teleosts remain a riddle to scientists. Numerous studies support a potentially similar role of the fish IFN-ϒ signalling pathway in some well-described immunological processes induced by this cytokine in mammals. Nevertheless, the existence in some teleost species of duplicated ifng genes and an additional gene derived from ifng known as interferon-γ-related (ifngrel), among other things, raises new interesting questions about the mode of action of these various molecules in fish. Moreover, certain IFN-ϒ-mediated activities recently observed in mammals are still fully unknown in fish. Another attractive but mainly unexplored curious property of IFN-ϒ in vertebrates is its potential dual role depending on the type of pathogen. In addition, some aspects mediated by this molecule could favour the resolution of a bacterial infection but be harmful in the context of a viral disease, and vice versa. This review collects old and new aspects of IFN-ϒ research in teleosts and discusses new questions and pathways of investigation based on recent discoveries in mammals.


Asunto(s)
Proteínas de Peces/genética , Peces/genética , Interferón gamma/genética , Animales , Proteínas de Peces/inmunología , Proteínas de Peces/metabolismo , Peces/inmunología , Interferón gamma/inmunología , Interferón gamma/metabolismo
14.
Fish Shellfish Immunol ; 95: 595-605, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31676430

RESUMEN

Fatty acids (FAs) are key elements that affect not only growth but also different immune functions, and therefore, nutrition is important for growing healthy fish. Zebrafish (Danio rerio) is a good model for assessing the beneficial effects of immunostimulants, including FAs, before applying them in aquaculture. Accordingly, this study evaluated the effects of palmitic acid (PA) treatment on different immune parameters of zebrafish and on the mortality caused by the spring viremia of carp virus (SVCV). The results suggest that PA modulates the infection outcome in vivo, which benefits zebrafish and results in reduced mortality and viral titres. The antiviral protection elicited by this FA seems to be associated with the inhibition of autophagy and is independent of other immune processes, such as neutrophil proliferation or type I interferon (IFN) activity. The use of PA as an immunostimulant at low concentrations showed great potential in the prevention of SVCV infections; therefore, this FA could help to prevent the mortality and morbidity caused by viral agents in aquacultured fish. Nevertheless, the potentially detrimental effects of suppressing autophagy in the organism should be taken into account.


Asunto(s)
Antivirales/farmacología , Autofagia/efectos de los fármacos , Inmunidad Innata , Ácido Palmítico/farmacología , Pez Cebra/inmunología , Animales , Acuicultura , Línea Celular , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Rhabdoviridae , Infecciones por Rhabdoviridae/inmunología , Pez Cebra/virología
15.
Fish Shellfish Immunol ; 90: 440-445, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31048040

RESUMEN

The Mediterranean mussel (Mytilus galloprovincialis) is a marine invasive species cultured all over the world. Mussels are an appreciated resource in local aquaculture enterprises because of their robust production and resilience that translates into a reliable economic value. So far, no massive mortalities have been reported in natural or cultured populations of this species. In the last years, the knowledge about its immune system has greatly improved but there are still many questions to be answered. One of them is why mussels, with their high filtering activity, are able to be exposed to a high number of potential pathogens without getting infected and without developing an elevated inflammatory response. The sequencing of the mussel genome has revealed a very complex organization with high heterozygosity, abundance of repetitive sequences and extreme intraspecific sequence diversity among individuals, mainly in immune related genes. Among those genes, antimicrobial peptides are the most expressed gene families in mussels, highly polymorphic and with antimicrobial effect against molluscs pathogens, but also against pathogens of lower vertebrates and humans. The combination of a complex genome with the adaptation of mussel immune system to a changing environment could explain this high variability, not only in immune-related genes, but also in the functional response among individuals sampled in the same location and date.


Asunto(s)
Cambio Climático , Genoma/inmunología , Inmunidad Innata/genética , Mytilus/genética , Mytilus/inmunología , Animales , Genómica
16.
Fish Shellfish Immunol ; 86: 892-899, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30580041

RESUMEN

To better understand spring viremia of carp virus (SVCV) pathogenesis in zebrafish proteomic analysis was used to examine the plasma protein profile in SVCV-infected zebrafish. A total of 3062 proteins were identified. Of those 137, 63 and 31 proteins were enriched in blood samples harvested at 1, 2 and 5 days post SVCV infection, respectively. These altered host proteins were classified based on their biological function: 23 proteins under the response to stimulus term were identified. Interestingly, at the top of the up-regulated proteins during SVCV infection were the proteins of the vitellogenin family (Vtg) and the grass carp reovirus-induced gene (Gig) proteins. Real-time RT-PCR evaluation of samples from internal organs verified that SVCV infection induced vtg and gig2 gene expression already at day 1 post-infection. Western blot analysis revealed the presence of Vtg protein only in blood of SVCV-infected fish. This is the first proteomic study to reveal the involvement of Vtg proteins in adult fish response to viral challenge. It also highlights the role of Gig proteins as important factors in antiviral response in fish. This work provides valuable relevant insight into virus-host interaction and the identification of molecular markers of fish response to virus.


Asunto(s)
Proteínas de Peces/inmunología , Plasma/química , Proteoma/inmunología , Pez Cebra/inmunología , Animales , Enfermedades de los Peces/inmunología , Rhabdoviridae/fisiología , Infecciones por Rhabdoviridae/inmunología , Infecciones por Rhabdoviridae/veterinaria , Pez Cebra/sangre , Pez Cebra/metabolismo
17.
Mar Drugs ; 17(2)2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30717094

RESUMEN

Global health is under attack by increasingly-frequent pandemics of viral origin. Antimicrobial peptides are a valuable tool to combat pathogenic microorganisms. Previous studies from our group have shown that the membrane-lytic region of turbot (Scophthalmus maximus) NK-lysine short peptide (Nkl71⁻100) exerts an anti-protozoal activity, probably due to membrane rupture. In addition, NK-lysine protein is highly expressed in zebrafish in response to viral infections. In this work several biophysical methods, such as vesicle aggregation, leakage and fluorescence anisotropy, are employed to investigate the interaction of Nkl71⁻100 with different glycerophospholipid vesicles. At acidic pH, Nkl71⁻100 preferably interacts with phosphatidylserine (PS), disrupts PS membranes, and allows the content leakage from vesicles. Furthermore, Nkl71⁻100 exerts strong antiviral activity against spring viremia of carp virus (SVCV) by inhibiting not only the binding of viral particles to host cells, but also the fusion of virus and cell membranes, which requires a low pH context. Such antiviral activity seems to be related to the important role that PS plays in these steps of the replication cycle of SVCV, a feature that is shared by other families of virus-comprising members with health and veterinary relevance. Consequently, Nkl71⁻100 is shown as a promising broad-spectrum antiviral candidate.


Asunto(s)
Antivirales/farmacología , Peces Planos , Fragmentos de Péptidos/farmacología , Proteolípidos/química , Proteolípidos/farmacología , Rhabdoviridae/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Secuencia de Aminoácidos , Animales , Antivirales/química , Línea Celular , Cyprinidae , Enfermedades de los Peces/tratamiento farmacológico , Enfermedades de los Peces/virología , Concentración de Iones de Hidrógeno , Fragmentos de Péptidos/química , Fosfolípidos/química , Fosfolípidos/farmacología , Rhabdoviridae/fisiología , Viremia/tratamiento farmacológico , Viremia/virología , Replicación Viral/efectos de los fármacos
18.
Fish Shellfish Immunol ; 82: 173-182, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30081180

RESUMEN

The innate immune response is able to ward off pathogens and remember previous infections using different mechanisms; this kind of immune reaction has been called "trained immunity". Changes in cellular metabolism (aerobic glycolysis) have been observed during training with some immunostimulants like ß-glucans or during viral and bacterial infections. We hypothesize that ß-glucans can induce metabolic changes used by the host to fight pathogens. Accordingly, we evaluated changes in metabolic parameters in turbot that could affect their survival after a previous intraperitoneal treatment with ß-glucans and subsequent administration of Viral Hemorrhagic Septicemia Virus (VHSV) or bacteria (Aeromonas salmonicida subsp. salmonicida). The results obtained support that ß-glucans, VHSV and A. salmonicida induce changes in lactate, glucose and ATP levels in plasma, head kidney and liver and in the mRNA expression of enzymes related to glucose and fatty acid metabolism in head kidney. Additionally, the metabolic changes induced by ß-glucans are beneficial for VHSV replication, but they are harmful to A. salmonicida, resulting in reduced mortality. ß-glucans appear to have great therapeutic potential and can induce trained immunity against bacterial disease but not against viral disease, which seems to take advantage of ß-glucan metabolic alterations.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Enfermedades de los Peces/inmunología , Peces Planos , Infecciones por Bacterias Gramnegativas/veterinaria , Infecciones por Rhabdoviridae/veterinaria , beta-Glucanos/administración & dosificación , Adyuvantes Inmunológicos/farmacología , Aeromonas salmonicida/fisiología , Animales , Enfermedades de los Peces/tratamiento farmacológico , Enfermedades de los Peces/metabolismo , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/metabolismo , Longevidad/efectos de los fármacos , Novirhabdovirus/fisiología , Distribución Aleatoria , Infecciones por Rhabdoviridae/tratamiento farmacológico , Infecciones por Rhabdoviridae/inmunología , Infecciones por Rhabdoviridae/metabolismo , beta-Glucanos/farmacología
19.
Fish Shellfish Immunol ; 83: 238-242, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30219383

RESUMEN

Changes to lipid metabolism are well-characterised consequences of human tuberculosis infection but their functional relevance are not clearly elucidated in these or other host-mycobacterial systems. The zebrafish-Mycobacterium marinum infection model is used extensively to model many aspects of human-M. tuberculosis pathogenesis but has not been widely used to study the role of infection-induced lipid metabolism. We find mammalian mycobacterial infection-induced alterations in host Low Density Lipoprotein metabolism are conserved in the zebrafish model of mycobacterial pathogenesis. Depletion of LDLR, a key lipid metabolism node, decreased M. marinum burden, and corrected infection-induced altered lipid metabolism resulting in decreased LDL and reduced the rate of macrophage transformation into foam cells. Our results demonstrate a conserved role for infection-induced alterations to host lipid metabolism, and specifically the LDL-LDLR axis, across host-mycobacterial species pairings.


Asunto(s)
Enfermedades de los Peces/metabolismo , Infecciones por Mycobacterium no Tuberculosas/metabolismo , Receptores de LDL/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , LDL-Colesterol/metabolismo , Modelos Animales de Enfermedad , Embrión no Mamífero , Metabolismo de los Lípidos , Infecciones por Mycobacterium no Tuberculosas/veterinaria , Receptores de LDL/genética , Pez Cebra , Proteínas de Pez Cebra/genética
20.
Fish Shellfish Immunol ; 82: 514-521, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30170110

RESUMEN

Chromatin immunoprecipitation (ChIP) and high throughput sequencing (ChIP-seq) have been used to assess histone methylation (epigenetic modification) dynamics within the internal organs of zebrafish after spring viremia of carp virus (SVCV) infection. Our results show H3K4me3 up-methylation in gene promoters associated with innate immune response during the first 5 days after SVCV infection. Gene Ontology (GO) enrichment analysis confirmed up-methylation in 218 genes in the "immune system process" category. In particular, the promoters of interferon (ifn), interferon stimulated genes (isg), Toll-like receptors (tlr) and c-reactive protein (crp) multi gene sets were marked with the permissive H3K4 methylation. Higher histone 3 methylation was associated with higher transcription levels of the corresponding genes. Therefore, the evidence presented here suggests that transcriptional regulation at the promoter level of key immune genes of the interferon signaling pathway and c-reactive proteins genes can be modulated by epigenetic modification of histones. This study emphasizes the importance of epigenetic control in the response of zebrafish to SVCV infection.


Asunto(s)
Epigénesis Genética , Enfermedades de los Peces/inmunología , Histonas/metabolismo , Inmunidad Innata , Infecciones por Rhabdoviridae/veterinaria , Pez Cebra/inmunología , Pez Cebra/metabolismo , Animales , Inmunoprecipitación de Cromatina/veterinaria , Enfermedades de los Peces/virología , Secuenciación de Nucleótidos de Alto Rendimiento/veterinaria , Metilación , Rhabdoviridae/fisiología , Infecciones por Rhabdoviridae/inmunología , Infecciones por Rhabdoviridae/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA