Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Genome Res ; 30(10): 1517-1532, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32963031

RESUMEN

The recent identification of recurrently mutated epigenetic regulator genes (ERGs) supports their critical role in tumorigenesis. We conducted a pan-cancer analysis integrating (epi)genome, transcriptome, and DNA methylome alterations in a curated list of 426 ERGs across 33 cancer types, comprising 10,845 tumor and 730 normal tissues. We found that, in addition to mutations, copy number alterations in ERGs were more frequent than previously anticipated and tightly linked to expression aberrations. Novel bioinformatics approaches, integrating the strengths of various driver prediction and multi-omics algorithms, and an orthogonal in vitro screen (CRISPR-Cas9) targeting all ERGs revealed genes with driver roles within and across malignancies and shared driver mechanisms operating across multiple cancer types and hallmarks. This is the largest and most comprehensive analysis thus far; it is also the first experimental effort to specifically identify ERG drivers (epidrivers) and characterize their deregulation and functional impact in oncogenic processes.


Asunto(s)
Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Genes Relacionados con las Neoplasias , Neoplasias/genética , Sistemas CRISPR-Cas , Proliferación Celular/genética , Simulación por Computador , Metilación de ADN , Epigenómica , Transición Epitelial-Mesenquimal/genética , Perfilación de la Expresión Génica , Humanos , Neoplasias/patología , ARN Neoplásico/metabolismo
2.
Brief Bioinform ; 21(2): 541-552, 2020 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-31220206

RESUMEN

Recent advances in sequencing, mass spectrometry and cytometry technologies have enabled researchers to collect large-scale omics data from the same set of biological samples. The joint analysis of multiple omics offers the opportunity to uncover coordinated cellular processes acting across different omic layers. In this work, we present a thorough comparison of a selection of recent integrative clustering approaches, including Bayesian (BCC and MDI) and matrix factorization approaches (iCluster, moCluster, JIVE and iNMF). Based on simulations, the methods were evaluated on their sensitivity and their ability to recover both the correct number of clusters and the simulated clustering at the common and data-specific levels. Standard non-integrative approaches were also included to quantify the added value of integrative methods. For most matrix factorization methods and one Bayesian approach (BCC), the shared and specific structures were successfully recovered with high and moderate accuracy, respectively. An opposite behavior was observed on non-integrative approaches, i.e. high performances on specific structures only. Finally, we applied the methods on the Cancer Genome Atlas breast cancer data set to check whether results based on experimental data were consistent with those obtained in the simulations.


Asunto(s)
Genómica/métodos , Proteómica/métodos , Teorema de Bayes , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Análisis por Conglomerados , Humanos , Aprendizaje Automático no Supervisado
3.
Int J Mol Sci ; 22(16)2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34445674

RESUMEN

Background: DNA methylation is an epigenetic control mechanism that may be altered by environmental exposures. We have previously reported that in utero exposure to the mycotoxin and liver carcinogen aflatoxin B1 from the maternal diet, as measured using biomarkers in the mothers' blood, was associated with differential DNA methylation in white blood cells of 6-month-old infants from The Gambia. Methods: Here we examined aflatoxin B1-associated differential DNA methylation in white blood cells of 24-month-old children from the same population (n = 244), in relation to the child's dietary exposure assessed using aflatoxin albumin biomarkers in blood samples collected at 6, 12 and 18 months of age. HM450 BeadChip arrays were used to assess DNA methylation, with data compared to aflatoxin albumin adduct levels using two approaches; a continuous model comparing aflatoxin adducts measured in samples collected at 18 months to DNA methylation at 24 months, and a categorical time-dose model that took into account aflatoxin adduct levels at 6, 12 and 18 months, for comparison to DNA methylation at 24 months. Results: Geometric mean (95% confidence intervals) for aflatoxin albumin levels were 3.78 (3.29, 4.34) at 6 months, 25.1 (21.67, 29.13) at 12 months and 49.48 (43.34, 56.49) at 18 months of age. A number of differentially methylated CpG positions and regions were associated with aflatoxin exposure, some of which affected gene expression. Pathway analysis highlighted effects on genes involved with with inflammatory, signalling and growth pathways. Conclusions: This study provides further evidence that exposure to aflatoxin in early childhood may impact on DNA methylation.


Asunto(s)
Aflatoxina B1/efectos adversos , Metilación de ADN/efectos de los fármacos , Exposición a Riesgos Ambientales/efectos adversos , Experiencias Adversas de la Infancia , Aflatoxinas/efectos adversos , Aflatoxinas/análisis , Aflatoxinas/sangre , Albúminas/análisis , Preescolar , ADN/metabolismo , Metilación de ADN/genética , Epigénesis Genética/genética , Epigenómica/métodos , Femenino , Gambia/epidemiología , Humanos , Lactante , Leucocitos/metabolismo , Masculino
4.
Clin Epigenetics ; 14(1): 176, 2022 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-36528638

RESUMEN

BACKGROUND: Obesity is a multifactorial and chronic condition of growing universal concern. It has recently been reported that bariatric surgery is a more successful treatment for severe obesity than other noninvasive interventions, resulting in rapid significant weight loss and associated chronic disease remission. The identification of distinct epigenetic patterns in patients who are obese or have metabolic imbalances has suggested a potential role for epigenetic alterations in causal or mediating pathways in the development of obesity-related pathologies. Specific changes in the epigenome (DNA methylome), associated with metabolic disorders, can be detected in the blood. We investigated whether such epigenetic changes are reversible after weight loss using genome-wide DNA methylome analysis of blood samples from individuals with severe obesity (mean BMI ~ 45) undergoing bariatric surgery. RESULTS: Our analysis revealed 41 significant (Bonferroni p < 0.05) and 1169 (false discovery rate p < 0.05) suggestive differentially methylated positions (DMPs) associated with weight loss due to bariatric surgery. Among the 41 significant DMPs, 5 CpGs were replicated in an independent cohort of BMI-discordant monozygotic twins (the heavier twin underwent diet-induced weight loss). The effect sizes of these 5 CpGs were consistent across discovery and replication sets (p < 0.05). We also identified 192 differentially methylated regions (DMRs) among which SMAD6 and PFKFB3 genes were the top hypermethylated and hypomethylated regions, respectively. Pathway enrichment analysis of the DMR-associated genes showed that functional pathways related to immune function and type 1 diabetes were significant. Weight loss due to bariatric surgery also significantly decelerated epigenetic age 12 months after the intervention (mean = - 4.29; p = 0.02). CONCLUSIONS: We identified weight loss-associated DNA-methylation alterations targeting immune and inflammatory gene pathways in blood samples from bariatric-surgery patients. The top hits were replicated in samples from an independent cohort of BMI-discordant monozygotic twins following a hypocaloric diet. Energy restriction and bariatric surgery thus share CpGs that may represent early indicators of response to the metabolic effects of weight loss. The analysis of bariatric surgery-associated DMRs suggests that epigenetic regulation of genes involved in endothelial and adipose tissue function is key in the pathophysiology of obesity.


Asunto(s)
Cirugía Bariátrica , Obesidad Mórbida , Humanos , Lactante , Epigénesis Genética , Metilación de ADN , Obesidad/genética , Obesidad/cirugía , Obesidad Mórbida/genética , Dieta Reductora , Pérdida de Peso/genética , ADN
5.
Nat Commun ; 13(1): 4115, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35840550

RESUMEN

Ultraviolet radiation (UV) is causally linked to cutaneous melanoma, yet the underlying epigenetic mechanisms, known as molecular sensors of exposure, have not been characterized in clinical biospecimens. Here, we integrate clinical, epigenome (DNA methylome), genome and transcriptome profiling of 112 cutaneous melanoma from two multi-ethnic cohorts. We identify UV-related alterations in regulatory regions and immunological pathways, with multi-OMICs cancer driver potential affecting patient survival. TAPBP, the top gene, is critically involved in immune function and encompasses several UV-altered methylation sites that were validated by targeted sequencing, providing cost-effective opportunities for clinical application. The DNA methylome also reveals non UV-related aberrations underlying pathological differences between the cutaneous and 17 acral melanomas. Unsupervised epigenomic mapping demonstrated that non UV-mutant cutaneous melanoma more closely resembles acral rather than UV-exposed cutaneous melanoma, with the latter showing better patient prognosis than the other two forms. These gene-environment interactions reveal translationally impactful mechanisms in melanomagenesis.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Melanoma/patología , Mutación , Pronóstico , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Rayos Ultravioleta/efectos adversos , Melanoma Cutáneo Maligno
6.
Mutat Res Rev Mutat Res ; 789: 108415, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35690418

RESUMEN

BACKGROUND: Among children, sex-specific differences in disease prevalence, age of onset, and susceptibility have been observed in health conditions including asthma, immune response, metabolic health, some pediatric and adult cancers, and psychiatric disorders. Epigenetic modifications such as DNA methylation may play a role in the sexual differences observed in diseases and other physiological traits. METHODS: We performed a meta-analysis of the association of sex and cord blood DNA methylation at over 450,000 CpG sites in 8438 newborns from 17 cohorts participating in the Pregnancy And Childhood Epigenetics (PACE) Consortium. We also examined associations of child sex with DNA methylation in older children ages 5.5-10 years from 8 cohorts (n = 4268). RESULTS: In newborn blood, sex was associated at Bonferroni level significance with differences in DNA methylation at 46,979 autosomal CpG sites (p < 1.3 × 10-7) after adjusting for white blood cell proportions and batch. Most of those sites had lower methylation levels in males than in females. Of the differentially methylated CpG sites identified in newborn blood, 68% (31,727) met look-up level significance (p < 1.1 × 10-6) in older children and had methylation differences in the same direction. CONCLUSIONS: This is a large-scale meta-analysis examining sex differences in DNA methylation in newborns and older children. Expanding upon previous studies, we replicated previous findings and identified additional autosomal sites with sex-specific differences in DNA methylation. Differentially methylated sites were enriched in genes involved in cancer, psychiatric disorders, and cardiovascular phenotypes.


Asunto(s)
Metilación de ADN , Epigenoma , Adolescente , Niño , Metilación de ADN/genética , Epigénesis Genética , Epigenómica , Femenino , Humanos , Recién Nacido , Masculino , Embarazo , Caracteres Sexuales
7.
Clin Epigenetics ; 13(1): 224, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34920739

RESUMEN

Metformin and weight loss relationships with epigenetic age measures-biological aging biomarkers-remain understudied. We performed a post-hoc analysis of a randomized controlled trial among overweight/obese breast cancer survivors (N = 192) assigned to metformin, placebo, weight loss with metformin, or weight loss with placebo interventions for 6 months. Epigenetic age was correlated with chronological age (r = 0.20-0.86; P < 0.005). However, no significant epigenetic aging associations were observed by intervention arms. Consistent with published reports in non-cancer patients, 6 months of metformin therapy may be inadequate to observe expected epigenetic age deceleration. Longer duration studies are needed to better characterize these relationships.Trial Registration: Registry Name: ClincialTrials.Gov.Registration Number: NCT01302379.Date of Registration: February 2011.URL: https://clinicaltrials.gov/ct2/show/NCT01302379.


Asunto(s)
Envejecimiento/genética , Neoplasias de la Mama/fisiopatología , Metformina/farmacología , Sobrepeso/terapia , Anciano , Envejecimiento/fisiología , Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/genética , Neoplasias de la Mama/diagnóstico , Femenino , Humanos , Metformina/administración & dosificación , Persona de Mediana Edad , Sobrepeso/epidemiología , Posmenopausia , Sobrevivientes/estadística & datos numéricos , Programas de Reducción de Peso/métodos , Programas de Reducción de Peso/normas , Programas de Reducción de Peso/estadística & datos numéricos
8.
Metabolism ; 110: 154292, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32553738

RESUMEN

BACKGROUND: Birthweight reflects in utero exposures and later health evolution. Despite existing studies employing high-dimensional molecular measurements, the understanding of underlying mechanisms of birthweight remains limited. METHODS: To investigate the systems biology of birthweight, we cross-sectionally integrated the methylome, the transcriptome, the metabolome and a set of inflammatory proteins measured in cord blood samples, collected from four birth-cohorts (n = 489). We focused on two sets of 68 metabolites and 903 CpGs previously related to birthweight and investigated the correlation structures existing between these two sets and all other omic features via bipartite Pearson correlations. RESULTS: This dataset revealed that the set of metabolome and methylome signatures of birthweight have seven signals in common, including three metabolites [PC(34:2), plasmalogen PC(36:4)/PC(O-36:5), and a compound with m/z of 781.0545], two CpGs (on the DHCR24 and SC4MOL gene), and two proteins (periostin and CCL22). CCL22, a macrophage-derived chemokine has not been previously identified in relation to birthweight. Since the results of the omics integration indicated the central role of cholesterol metabolism, we explored the association of cholesterol levels in cord blood with birthweight in the ENVIRONAGE cohort (n = 1097), finding that higher birthweight was associated with increased high-density lipoprotein cholesterol and that high-density lipoprotein cholesterol was lower in small versus large for gestational age newborns. CONCLUSIONS: Our data suggests that an integration of different omic-layers in addition to single omics studies is a useful approach to generate new hypotheses regarding biological mechanisms. CCL22 and cholesterol metabolism in cord blood play a mechanistic role in birthweight.


Asunto(s)
Peso al Nacer , Colesterol/metabolismo , Sangre Fetal/química , Quimiocina CCL22/metabolismo , Estudios Transversales , Femenino , Humanos , Recién Nacido , Masculino , Metaboloma , Metilación
9.
Genome Med ; 12(1): 25, 2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-32114984

RESUMEN

BACKGROUND: Preterm birth and shorter duration of pregnancy are associated with increased morbidity in neonatal and later life. As the epigenome is known to have an important role during fetal development, we investigated associations between gestational age and blood DNA methylation in children. METHODS: We performed meta-analysis of Illumina's HumanMethylation450-array associations between gestational age and cord blood DNA methylation in 3648 newborns from 17 cohorts without common pregnancy complications, induced delivery or caesarean section. We also explored associations of gestational age with DNA methylation measured at 4-18 years in additional pediatric cohorts. Follow-up analyses of DNA methylation and gene expression correlations were performed in cord blood. DNA methylation profiles were also explored in tissues relevant for gestational age health effects: fetal brain and lung. RESULTS: We identified 8899 CpGs in cord blood that were associated with gestational age (range 27-42 weeks), at Bonferroni significance, P < 1.06 × 10- 7, of which 3343 were novel. These were annotated to 4966 genes. After restricting findings to at least three significant adjacent CpGs, we identified 1276 CpGs annotated to 325 genes. Results were generally consistent when analyses were restricted to term births. Cord blood findings tended not to persist into childhood and adolescence. Pathway analyses identified enrichment for biological processes critical to embryonic development. Follow-up of identified genes showed correlations between gestational age and DNA methylation levels in fetal brain and lung tissue, as well as correlation with expression levels. CONCLUSIONS: We identified numerous CpGs differentially methylated in relation to gestational age at birth that appear to reflect fetal developmental processes across tissues. These findings may contribute to understanding mechanisms linking gestational age to health effects.


Asunto(s)
Metilación de ADN , Epigenoma , Desarrollo Fetal/genética , Nacimiento Prematuro/genética , Adolescente , Niño , Preescolar , ADN/sangre , Femenino , Sitios Genéticos , Humanos , Recién Nacido , Recien Nacido Prematuro , Masculino
10.
Artículo en Inglés | MEDLINE | ID: mdl-30791383

RESUMEN

A high body mass (BMI) index has repeatedly been associated with non-atopic asthma, but the biological mechanism linking obesity to asthma is still poorly understood. We aimed to test the hypothesis that inflammation and/or innate immunity plays a role in the obesity-asthma link. DNA methylome was measured in blood samples of 61 non-atopic participants with asthma and 146 non-atopic participants without asthma (non-smokers for at least 10 years) taking part in the Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults (SAPALDIA) study. Modification by DNA methylation of the association of BMI or BMI change over 10 years with adult-onset asthma was examined at each CpG site and differentially methylated region. Pathway enrichment tests were conducted for genes in a priori curated inflammatory pathways and the NLRP3-IL1B-IL17 axis. The latter was chosen on the basis of previous work in mice. Inflammatory pathways including glucocorticoid/PPAR signaling (p = 0.0023), MAPK signaling (p = 0.013), NF-κB signaling (p = 0.031), and PI3K/AKT signaling (p = 0.031) were enriched for the effect modification of BMI, while NLRP3-IL1B-IL17 axis was enriched for the effect modification of BMI change over 10 years (p = 0.046). DNA methylation measured in peripheral blood is consistent with inflammation as a link between BMI and adult-onset asthma and with the NLRP3-IL1B-IL17 axis as a link between BMI change over 10 years and adult-onset asthma in non-atopic participants.


Asunto(s)
Asma/genética , Índice de Masa Corporal , Metilación de ADN , Inflamación/metabolismo , Adulto , Animales , Estudios de Cohortes , Femenino , Humanos , Sistema de Señalización de MAP Quinasas , Masculino , Ratones , FN-kappa B/metabolismo , Obesidad/complicaciones , PPAR gamma/metabolismo
11.
Nat Commun ; 10(1): 1893, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-31015461

RESUMEN

Birthweight is associated with health outcomes across the life course, DNA methylation may be an underlying mechanism. In this meta-analysis of epigenome-wide association studies of 8,825 neonates from 24 birth cohorts in the Pregnancy And Childhood Epigenetics Consortium, we find that DNA methylation in neonatal blood is associated with birthweight at 914 sites, with a difference in birthweight ranging from -183 to 178 grams per 10% increase in methylation (PBonferroni < 1.06 x 10-7). In additional analyses in 7,278 participants, <1.3% of birthweight-associated differential methylation is also observed in childhood and adolescence, but not adulthood. Birthweight-related CpGs overlap with some Bonferroni-significant CpGs that were previously reported to be related to maternal smoking (55/914, p = 6.12 x 10-74) and BMI in pregnancy (3/914, p = 1.13x10-3), but not with those related to folate levels in pregnancy. Whether the associations that we observe are causal or explained by confounding or fetal growth influencing DNA methylation (i.e. reverse causality) requires further research.


Asunto(s)
Peso al Nacer/genética , ADN/metabolismo , Epigénesis Genética , Genoma Humano , Adolescente , Adulto , Índice de Masa Corporal , Niño , Islas de CpG , ADN/genética , Metilación de ADN , Femenino , Desarrollo Fetal/genética , Feto , Ácido Fólico/sangre , Estudio de Asociación del Genoma Completo , Humanos , Recién Nacido , Masculino , Embarazo , Efectos Tardíos de la Exposición Prenatal/sangre , Efectos Tardíos de la Exposición Prenatal/etiología , Efectos Tardíos de la Exposición Prenatal/genética , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Fumar/efectos adversos , Fumar/sangre , Fumar/genética
12.
Clin Epigenetics ; 10: 38, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29588806

RESUMEN

Background: Methylation measures quantified by microarray techniques can be affected by systematic variation due to the technical processing of samples, which may compromise the accuracy of the measurement process and contribute to bias the estimate of the association under investigation. The quantification of the contribution of the systematic source of variation is challenging in datasets characterized by hundreds of thousands of features.In this study, we introduce a method previously developed for the analysis of metabolomics data to evaluate the performance of existing normalizing techniques to correct for unwanted variation. Illumina Infinium HumanMethylation450K was used to acquire methylation levels in over 421,000 CpG sites for 902 study participants of a case-control study on breast cancer nested within the EPIC cohort. The principal component partial R-square (PC-PR2) analysis was used to identify and quantify the variability attributable to potential systematic sources of variation. Three correcting techniques, namely ComBat, surrogate variables analysis (SVA) and a linear regression model to compute residuals were applied. The impact of each correcting method on the association between smoking status and DNA methylation levels was evaluated, and results were compared with findings from a large meta-analysis. Results: A sizeable proportion of systematic variability due to variables expressing 'batch' and 'sample position' within 'chip' was identified, with values of the partial R2 statistics equal to 9.5 and 11.4% of total variation, respectively. After application of ComBat or the residuals' methods, the contribution was 1.3 and 0.2%, respectively. The SVA technique resulted in a reduced variability due to 'batch' (1.3%) and 'sample position' (0.6%), and in a diminished variability attributable to 'chip' within a batch (0.9%). After ComBat or the residuals' corrections, a larger number of significant sites (k = 600 and k = 427, respectively) were associated to smoking status than the SVA correction (k = 96). Conclusions: The three correction methods removed systematic variation in DNA methylation data, as assessed by the PC-PR2, which lent itself as a useful tool to explore variability in large dimension data. SVA produced more conservative findings than ComBat in the association between smoking and DNA methylation.


Asunto(s)
Neoplasias de la Mama/genética , Biología Computacional/métodos , Metilación de ADN , Estudios de Casos y Controles , Islas de CpG , Epigénesis Genética , Femenino , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Análisis de Componente Principal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA