Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Genome Biol ; 23(1): 141, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35768876

RESUMEN

BACKGROUND: Clinical laboratories routinely use formalin-fixed paraffin-embedded (FFPE) tissue or cell block cytology samples in oncology panel sequencing to identify mutations that can predict patient response to targeted therapy. To understand the technical error due to FFPE processing, a robustly characterized diploid cell line was used to create FFPE samples with four different pre-tissue processing formalin fixation times. A total of 96 FFPE sections were then distributed to different laboratories for targeted sequencing analysis by four oncopanels, and variants resulting from technical error were identified. RESULTS: Tissue sections that fail more frequently show low cellularity, lower than recommended library preparation DNA input, or target sequencing depth. Importantly, sections from block surfaces are more likely to show FFPE-specific errors, akin to "edge effects" seen in histology, while the inner samples display no quality degradation related to fixation time. CONCLUSIONS: To assure reliable results, we recommend avoiding the block surface portion and restricting mutation detection to genomic regions of high confidence.


Asunto(s)
Formaldehído , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Adhesión en Parafina , Análisis de Secuencia de ADN , Fijación del Tejido
2.
Cell Rep Methods ; 1(7): 100106, 2021 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-35475002

RESUMEN

The primary objective of the FDA-led Sequencing and Quality Control Phase 2 (SEQC2) project is to develop standard analysis protocols and quality control metrics for use in DNA testing to enhance scientific research and precision medicine. This study reports a targeted next-generation sequencing (NGS) method that will enable more accurate detection of actionable mutations in circulating tumor DNA (ctDNA) clinical specimens. To accomplish this, a synthetic internal standard spike-in was designed for each actionable mutation target, suitable for use in NGS following hybrid capture enrichment and unique molecular index (UMI) or non-UMI library preparation. When mixed with contrived ctDNA reference samples, internal standards enabled calculation of technical error rate, limit of blank, and limit of detection for each variant at each nucleotide position in each sample. True-positive mutations with variant allele fraction too low for detection by current practice were detected with this method, thereby increasing sensitivity.


Asunto(s)
ADN Tumoral Circulante , Humanos , ADN Tumoral Circulante/genética , Mutación/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Medicina de Precisión/métodos , Control de Calidad
3.
Genome Biol ; 22(1): 109, 2021 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-33863344

RESUMEN

BACKGROUND: Targeted sequencing using oncopanels requires comprehensive assessments of accuracy and detection sensitivity to ensure analytical validity. By employing reference materials characterized by the U.S. Food and Drug Administration-led SEquence Quality Control project phase2 (SEQC2) effort, we perform a cross-platform multi-lab evaluation of eight Pan-Cancer panels to assess best practices for oncopanel sequencing. RESULTS: All panels demonstrate high sensitivity across targeted high-confidence coding regions and variant types for the variants previously verified to have variant allele frequency (VAF) in the 5-20% range. Sensitivity is reduced by utilizing VAF thresholds due to inherent variability in VAF measurements. Enforcing a VAF threshold for reporting has a positive impact on reducing false positive calls. Importantly, the false positive rate is found to be significantly higher outside the high-confidence coding regions, resulting in lower reproducibility. Thus, region restriction and VAF thresholds lead to low relative technical variability in estimating promising biomarkers and tumor mutational burden. CONCLUSION: This comprehensive study provides actionable guidelines for oncopanel sequencing and clear evidence that supports a simplified approach to assess the analytical performance of oncopanels. It will facilitate the rapid implementation, validation, and quality control of oncopanels in clinical use.


Asunto(s)
Biomarcadores de Tumor , Pruebas Genéticas/métodos , Genómica/métodos , Neoplasias/genética , Oncogenes , Variaciones en el Número de Copia de ADN , Pruebas Genéticas/normas , Genómica/normas , Humanos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/normas , Mutación , Neoplasias/diagnóstico , Polimorfismo de Nucleótido Simple , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
4.
Genome Biol ; 22(1): 111, 2021 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-33863366

RESUMEN

BACKGROUND: Oncopanel genomic testing, which identifies important somatic variants, is increasingly common in medical practice and especially in clinical trials. Currently, there is a paucity of reliable genomic reference samples having a suitably large number of pre-identified variants for properly assessing oncopanel assay analytical quality and performance. The FDA-led Sequencing and Quality Control Phase 2 (SEQC2) consortium analyze ten diverse cancer cell lines individually and their pool, termed Sample A, to develop a reference sample with suitably large numbers of coding positions with known (variant) positives and negatives for properly evaluating oncopanel analytical performance. RESULTS: In reference Sample A, we identify more than 40,000 variants down to 1% allele frequency with more than 25,000 variants having less than 20% allele frequency with 1653 variants in COSMIC-related genes. This is 5-100× more than existing commercially available samples. We also identify an unprecedented number of negative positions in coding regions, allowing statistical rigor in assessing limit-of-detection, sensitivity, and precision. Over 300 loci are randomly selected and independently verified via droplet digital PCR with 100% concordance. Agilent normal reference Sample B can be admixed with Sample A to create new samples with a similar number of known variants at much lower allele frequency than what exists in Sample A natively, including known variants having allele frequency of 0.02%, a range suitable for assessing liquid biopsy panels. CONCLUSION: These new reference samples and their admixtures provide superior capability for performing oncopanel quality control, analytical accuracy, and validation for small to large oncopanels and liquid biopsy assays.


Asunto(s)
Alelos , Biomarcadores de Tumor , Frecuencia de los Genes , Pruebas Genéticas/métodos , Variación Genética , Genómica/métodos , Neoplasias/genética , Línea Celular Tumoral , Variaciones en el Número de Copia de ADN , Heterogeneidad Genética , Pruebas Genéticas/normas , Genómica/normas , Humanos , Neoplasias/diagnóstico , Flujo de Trabajo
5.
Nat Biotechnol ; 39(9): 1115-1128, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33846644

RESUMEN

Circulating tumor DNA (ctDNA) sequencing is being rapidly adopted in precision oncology, but the accuracy, sensitivity and reproducibility of ctDNA assays is poorly understood. Here we report the findings of a multi-site, cross-platform evaluation of the analytical performance of five industry-leading ctDNA assays. We evaluated each stage of the ctDNA sequencing workflow with simulations, synthetic DNA spike-in experiments and proficiency testing on standardized, cell-line-derived reference samples. Above 0.5% variant allele frequency, ctDNA mutations were detected with high sensitivity, precision and reproducibility by all five assays, whereas, below this limit, detection became unreliable and varied widely between assays, especially when input material was limited. Missed mutations (false negatives) were more common than erroneous candidates (false positives), indicating that the reliable sampling of rare ctDNA fragments is the key challenge for ctDNA assays. This comprehensive evaluation of the analytical performance of ctDNA assays serves to inform best practice guidelines and provides a resource for precision oncology.


Asunto(s)
ADN Tumoral Circulante/genética , Oncología Médica , Neoplasias/genética , Medicina de Precisión , Análisis de Secuencia de ADN/normas , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Límite de Detección , Guías de Práctica Clínica como Asunto , Reproducibilidad de los Resultados
6.
Nat Biotechnol ; 24(9): 1123-31, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16964226

RESUMEN

We have assessed the utility of RNA titration samples for evaluating microarray platform performance and the impact of different normalization methods on the results obtained. As part of the MicroArray Quality Control project, we investigated the performance of five commercial microarray platforms using two independent RNA samples and two titration mixtures of these samples. Focusing on 12,091 genes common across all platforms, we determined the ability of each platform to detect the correct titration response across the samples. Global deviations from the response predicted by the titration ratios were observed. These differences could be explained by variations in relative amounts of messenger RNA as a fraction of total RNA between the two independent samples. Overall, both the qualitative and quantitative correspondence across platforms was high. In summary, titration samples may be regarded as a valuable tool, not only for assessing microarray platform performance and different analysis methods, but also for determining some underlying biological features of the samples.


Asunto(s)
Análisis de Falla de Equipo/métodos , Perfilación de la Expresión Génica/instrumentación , Perfilación de la Expresión Génica/normas , Análisis de Secuencia por Matrices de Oligonucleótidos/instrumentación , Análisis de Secuencia por Matrices de Oligonucleótidos/normas , ARN/análisis , ARN/genética , Algoritmos , Valores de Referencia , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Estados Unidos
7.
Respir Res ; 9: 34, 2008 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-18426570

RESUMEN

BACKGROUND: CD14, a receptor for lipopolysaccharides (LPS), is found in both a membrane-bound form (mCD14) and a soluble form (sCD14). It is suggested that sCD14 is mainly released from blood monocytes by serine protease-mediated shedding. Because alpha1-antitrypsin (AAT), an inhibitor of serine proteases, has been shown to regulate CD14 expression in human monocytes in vitro, we sought to investigate plasma levels of sCD14 and monocyte expression of mCD14 in subjects at age 30 years with normal MM and deficient PiZZ and PiSZ genotypes of AAT. METHODS: Plasma levels of AAT and sCD14 were measured in 75 PiZZ and 34 PiSZ individuals with normal lung function identified from the Swedish neonatal AAT deficiency screening, and in 95 age matched PiMM controls. The mCD14 expression in monocytes from 9 PiZZ, 6 PiSZ and 11 PiMM subjects was analysed by FACS and Quantitative Real Time Reverse Transcription PCA. RESULTS: As expected, plasma AAT concentrations were PiMM>PiSZ>PiZZ (p < 0.001). Plasma sCD14 levels were higher in PiZZ than in PiMM subjects (p < 0.01). The expression level of mCD14 was higher (1.89-fold) in monocytes isolated from PiZZ subjects compared to PiMM controls (p = 0.00189). CONCLUSION: This study is the first to show higher levels of plasma sCD14 and monocyte mCD14 expression in young, clinically healthy PiZZ AAT subjects.


Asunto(s)
Receptores de Lipopolisacáridos/sangre , Monocitos/metabolismo , Receptores Inmunológicos/sangre , Deficiencia de alfa 1-Antitripsina/sangre , Adulto , Biomarcadores/sangre , Femenino , Humanos , Masculino , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
8.
BMC Genomics ; 5(1): 20, 2004 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-15113400

RESUMEN

BACKGROUND: Obtaining reliable and reproducible two-color microarray gene expression data is critically important for understanding the biological significance of perturbations made on a cellular system. Microarray design, RNA preparation and labeling, hybridization conditions and data acquisition and analysis are variables difficult to simultaneously control. A useful tool for monitoring and controlling intra- and inter-experimental variation is Universal Reference RNA (URR), developed with the goal of providing hybridization signal at each microarray probe location (spot). Measuring signal at each spot as the ratio of experimental RNA to reference RNA targets, rather than relying on absolute signal intensity, decreases variability by normalizing signal output in any two-color hybridization experiment. RESULTS: Human, mouse and rat URR (UHRR, UMRR and URRR, respectively) were prepared from pools of RNA derived from individual cell lines representing different tissues. A variety of microarrays were used to determine percentage of spots hybridizing with URR and producing signal above a user defined threshold (microarray coverage). Microarray coverage was consistently greater than 80% for all arrays tested. We confirmed that individual cell lines contribute their own unique set of genes to URR, arguing for a pool of RNA from several cell lines as a better configuration for URR as opposed to a single cell line source for URR. Microarray coverage comparing two separately prepared batches each of UHRR, UMRR and URRR were highly correlated (Pearson's correlation coefficients of 0.97). CONCLUSION: Results of this study demonstrate that large quantities of pooled RNA from individual cell lines are reproducibly prepared and possess diverse gene representation. This type of reference provides a standard for reducing variation in microarray experiments and allows more reliable comparison of gene expression data within and between experiments and laboratories.


Asunto(s)
Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , ARN/genética , Animales , Línea Celular , Perfilación de la Expresión Génica/métodos , Perfilación de la Expresión Génica/normas , Humanos , Ratones , Hibridación de Ácido Nucleico/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/normas , ARN/metabolismo , ARN/normas , Ratas , Estándares de Referencia , Reproducibilidad de los Resultados
9.
J Vis Exp ; (38)2010 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-20428089

RESUMEN

We have developed a fast, simple, and accurate DNA-based screening method to identify the fish species present in fresh and processed seafood samples. This versatile method employs PCR amplification of genomic DNA extracted from fish samples, followed by restriction fragment length polymorphism (RFLP) analysis to generate fragment patterns that can be resolved on the Agilent 2100 Bioanalyzer and matched to the correct species using RFLP pattern matching software. The fish identification method uses a simple, reliable, spin column- based protocol to isolate DNA from fish samples. The samples are treated with proteinase K to release the nucleic acids into solution. DNA is then isolated by suspending the sample in binding buffer and loading onto a micro- spin cup containing a silica- based fiber matrix. The nucleic acids in the sample bind to the fiber matrix. The immobilized nucleic acids are washed to remove contaminants, and total DNA is recovered in a final volume of 100 mul. The isolated DNA is ready for PCR amplification with the provided primers that bind to sequences found in all fish genomes. The PCR products are then digested with three different restriction enzymes and resolved on the Agilent 2100 Bioanalyzer. The fragment lengths produced in the digestion reactions can be used to determine the species of fish from which the DNA sample was prepared, using the RFLP pattern matching software containing a database of experimentally- derived RFLP patterns from commercially relevant fish species.


Asunto(s)
ADN/análisis , ADN/genética , Peces/clasificación , Peces/genética , Reacción en Cadena de la Polimerasa/métodos , Alimentos Marinos/clasificación , Animales , ADN/aislamiento & purificación , Polimorfismo de Longitud del Fragmento de Restricción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA