Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Phys Rev Lett ; 129(24): 240501, 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36563264

RESUMEN

Many quantum algorithms involve the evaluation of expectation values. Optimal strategies for estimating a single expectation value are known, requiring a number of state preparations that scales with the target error ϵ as O(1/ϵ). In this Letter, we address the task of estimating the expectation values of M different observables, each to within additive error ϵ, with the same 1/ϵ dependence. We describe an approach that leverages Gilyén et al.'s quantum gradient estimation algorithm to achieve O(sqrt[M]/ϵ) scaling up to logarithmic factors, regardless of the commutation properties of the M observables. We prove that this scaling is worst-case optimal in the high-precision regime if the state preparation is treated as a black box, even when the operators are mutually commuting. We highlight the flexibility of our approach by presenting several generalizations, including a strategy for accelerating the estimation of a collection of dynamic correlation functions.

2.
J Chem Phys ; 155(15): 150901, 2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34686056

RESUMEN

With the rapid development of quantum technology, one of the leading applications that has been identified is the simulation of chemistry. Interestingly, even before full scale quantum computers are available, quantum computer science has exhibited a remarkable string of results that directly impact what is possible in a chemical simulation with any computer. Some of these results even impact our understanding of chemistry in the real world. In this Perspective, we take the position that direct chemical simulation is best understood as a digital experiment. While on the one hand, this clarifies the power of quantum computers to extend our reach, it also shows us the limitations of taking such an approach too directly. Leveraging results that quantum computers cannot outpace the physical world, we build to the controversial stance that some chemical problems are best viewed as problems for which no algorithm can deliver their solution, in general, known in computer science as undecidable problems. This has implications for the predictive power of thermodynamic models and topics such as the ergodic hypothesis. However, we argue that this Perspective is not defeatist but rather helps shed light on the success of existing chemical models such as transition state theory, molecular orbital theory, and thermodynamics as models that benefit from data. We contextualize recent results, showing that data-augmented models are a more powerful rote simulation. These results help us appreciate the success of traditional chemical theory and anticipate new models learned from experimental data. Not only can quantum computers provide data for such models, but they can also extend the class and power of models that utilize data in fundamental ways. These discussions culminate in speculation on new ways for quantum computing and chemistry to interact and our perspective on the eventual roles of quantum computers in the future of chemistry.

3.
Nat Commun ; 13(1): 5977, 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36216839

RESUMEN

The phenomena of quantum criticality underlie many novel collective phenomena found in condensed matter systems. They present a challenge for classical and quantum simulation, in part because of diverging correlation lengths and consequently strong finite-size effects. Tensor network techniques that work directly in the thermodynamic limit can negotiate some of these difficulties. Here, we optimise a translationally invariant, sequential quantum circuit on a superconducting quantum device to simulate the groundstate of the quantum Ising model through its quantum critical point. We further demonstrate how the dynamical quantum critical point found in quenches of this model across its quantum critical point can be simulated. Our approach avoids finite-size scaling effects by using sequential quantum circuits inspired by infinite matrix product states. We provide efficient circuits and a variety of error mitigation strategies to implement, optimise and time-evolve these states.

4.
PRX quantum ; 3(3)2022.
Artículo en Inglés | MEDLINE | ID: mdl-36624758

RESUMEN

We propose a quantum algorithm for inferring the molecular nuclear spin Hamiltonian from time-resolved measurements of spin-spin correlators, which can be obtained via nuclear magnetic resonance (NMR). We focus on learning the anisotropic dipolar term of the Hamiltonian, which generates dynamics that are challenging to classically simulate in some contexts. We demonstrate the ability to directly estimate the Jacobian and Hessian of the corresponding learning problem on a quantum computer, allowing us to learn the Hamiltonian parameters. We develop algorithms for performing this computation on both noisy near-term and future fault-tolerant quantum computers. We argue that the former is promising as an early beyond-classical quantum application since it only requires evolution of a local spin Hamiltonian. We investigate the example of a protein (ubiquitin) confined on a membrane as a benchmark of our method. We isolate small spin clusters, demonstrate the convergence of our learning algorithm on one such example, and then investigate the learnability of these clusters as we cross the ergodic to non-ergodic phase transition by suppressing the dipolar interaction. We see a clear correspondence between a drop in the multifractal dimension measured across many-body eigenstates of these clusters, and a transition in the structure of the Hessian of the learning cost function (from degenerate to learnable). Our hope is that such quantum computations might enable the interpretation and development of new NMR techniques for analyzing molecular structure.

5.
Nat Commun ; 13(1): 5743, 2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36220831

RESUMEN

The famous, yet unsolved, Fermi-Hubbard model for strongly-correlated electronic systems is a prominent target for quantum computers. However, accurately representing the Fermi-Hubbard ground state for large instances may be beyond the reach of near-term quantum hardware. Here we show experimentally that an efficient, low-depth variational quantum algorithm with few parameters can reproduce important qualitative features of medium-size instances of the Fermi-Hubbard model. We address 1 × 8 and 2 × 4 instances on 16 qubits on a superconducting quantum processor, substantially larger than previous work based on less scalable compression techniques, and going beyond the family of 1D Fermi-Hubbard instances, which are solvable classically. Consistent with predictions for the ground state, we observe the onset of the metal-insulator transition and Friedel oscillations in 1D, and antiferromagnetic order in both 1D and 2D. We use a variety of error-mitigation techniques, including symmetries of the Fermi-Hubbard model and a recently developed technique tailored to simulating fermionic systems. We also introduce a new variational optimisation algorithm based on iterative Bayesian updates of a local surrogate model.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA