Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Neurochem ; 168(9): 1973-1992, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38131125

RESUMEN

Glycine Transporter 2 (GlyT2) inhibitors have shown considerable potential as analgesics for the treatment of neuropathic pain but also display considerable side effects. One potential source of side effects is irreversible inhibition. In this study, we have characterized the mechanism of ORG25543 inhibition of GlyT2 by first considering three potential ligand binding sites on GlyT2-the substrate site, the vestibule allosteric site and the lipid allosteric site. The three sites were tested using a combination of molecular dynamics simulations and analysis of the inhibition of glycine transport of a series point mutated GlyT2 using electrophysiological methods. We demonstrate that the lipid allosteric site on GlyT2 is the most likely binding site for ORG25543. We also demonstrate that cholesterol derived from the cell membrane can form specific interactions with inhibitor-bound transporters to form an allosteric network of regulatory sites. These observations will guide the future design of GlyT2 inhibitors with the objective of minimising on-target side effects and improving the therapeutic window for the treatment of patients suffering from neuropathic pain.


Asunto(s)
Sitio Alostérico , Analgésicos , Proteínas de Transporte de Glicina en la Membrana Plasmática , Proteínas de Transporte de Glicina en la Membrana Plasmática/antagonistas & inhibidores , Proteínas de Transporte de Glicina en la Membrana Plasmática/metabolismo , Analgésicos/farmacología , Analgésicos/química , Sitio Alostérico/efectos de los fármacos , Humanos , Animales , Simulación de Dinámica Molecular , Sitios de Unión/efectos de los fármacos , Glicina/farmacología , Benzamidas
2.
Molecules ; 29(17)2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39275060

RESUMEN

The accumulation of iron in dopaminergic neurons can cause oxidative stress and dopaminergic neuron degeneration. Iron chelation therapy may reduce dopaminergic neurodegeneration, but chelators should be targeted towards dopaminergic cells. In this work, two series of compounds based on 8-hydroxyquinoline and deferiprone, iron chelators that have amphetamine-like structures, have been designed, synthesized and characterized. Each of these compounds chelated iron ions in aqueous solution. The hydroxyquinoline-based compounds exhibited stronger iron-binding constants than those of the deferiprone derivatives. The hydroxyquinoline-based compounds also exhibited greater free radical scavenging activities compared to the deferiprone derivatives. Molecular dynamics simulations showed that the hydroxyquinoline-based compounds generally bound well within human dopamine transporter cavities. Thus, these compounds are excellent candidates for future exploration as drugs against diseases that are affected by iron-induced dopaminergic neuron damage, such as Parkinson's disease.


Asunto(s)
Clioquinol , Deferiprona , Quelantes del Hierro , Hierro , Deferiprona/farmacología , Deferiprona/química , Quelantes del Hierro/farmacología , Quelantes del Hierro/química , Humanos , Hierro/química , Hierro/metabolismo , Clioquinol/farmacología , Clioquinol/química , Simulación de Dinámica Molecular , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Depuradores de Radicales Libres/farmacología , Depuradores de Radicales Libres/química , Estructura Molecular , Anfetamina/química , Anfetamina/farmacología
3.
Angew Chem Int Ed Engl ; 63(4): e202315887, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-37988197

RESUMEN

Hydrazones-consisting of a dynamic imine bond and an acidic NH proton-have recently emerged as versatile photoswitches underpinned by their ability to form thermally bistable isomers, (Z) and (E), respectively. Herein, we introduce two photoresponsive homopolymers containing structurally different hydrazones as main-chain repeating units, synthesized via head-to-tail Acyclic Diene METathesis (ADMET) polymerization. Their key difference lies in the hydrazone design, specifically the location of the aliphatic arm connecting the rotor of the hydrazone photoswitch to the aliphatic polymer backbone. Critically, we demonstrate that their main photoresponsive property, i.e., their hydrodynamic volume, changes in opposite directions upon photoisomerization (λ=410 nm) in dilute solution. Further, the polymers-independent of the design of the individual hydrazone monomer-feature a photoswitchable glass transition temperature (Tg ) by close to 10 °C. The herein established design strategy allows to photochemically manipulate macromolecular properties by simple structural changes.

4.
Angew Chem Int Ed Engl ; 62(23): e202302995, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-36882373

RESUMEN

We introduce a single-chain nanoparticle (SCNP) system capable of catalyzing the photooxidation of nonpolar alkenes up to three times more efficiently than an equivalent small-molecule photosensitizer at an identical concentration. Specifically, we construct a polymer chain constituted of poly(ethylene glycol) methyl ether methacrylate and glycidyl methacrylate which we compact via multifunctional thiol-epoxide ligation and functionalize with Rose Bengal (RB) in a one pot reaction, affording SCNPs with a hydrophilic shell and hydrophobic photocatalytic regions. Photooxidation of the internal alkene in oleic acid proceeds under green light. RB confined within the SCNP is three times more effective for nonpolar alkenes than free RB in solution, which we hypothesize is due to the spatial proximity of the photosensitizing units to the substrate in the hydrophobic region. Our approach demonstrates that SCNP based catalysts can afford enhanced photocatalysis via confinement effects in a homogeneous reaction environment.

5.
J Biol Chem ; 296: 100282, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33450225

RESUMEN

The role of lipids in modulating membrane protein function is an emerging and rapidly growing area of research. The rational design of lipids that target membrane proteins for the treatment of pathological conditions is a novel extension in this field and provides a step forward in our understanding of membrane transporters. Bioactive lipids show considerable promise as analgesics for the treatment of chronic pain and bind to a high-affinity allosteric-binding site on the human glycine transporter 2 (GlyT2 or SLC6A5). Here, we use a combination of medicinal chemistry, electrophysiology, and computational modeling to develop a rational structure-activity relationship for lipid inhibitors and demonstrate the key role of the lipid tail interactions for GlyT2 inhibition. Specifically, we examine how lipid inhibitor head group stereochemistry, tail length, and double-bond position promote enhanced inhibition. Overall, the l-stereoisomer is generally a better inhibitor than the d-stereoisomer, longer tail length correlates with greater potency, and the position of the double bond influences the activity of the inhibitor. We propose that the binding of the lipid inhibitor deep into the allosteric-binding pocket is critical for inhibition. Furthermore, this provides insight into the mechanism of inhibition of GlyT2 and highlights how lipids can modulate the activity of membrane proteins by binding to cavities between helices. The principles identified in this work have broader implications for the development of a larger class of compounds that could target SLC6 transporters for disease treatment.


Asunto(s)
Analgésicos/farmacología , Dolor Crónico/tratamiento farmacológico , Proteínas de Transporte de Glicina en la Membrana Plasmática/genética , Lípidos/química , Regulación Alostérica/efectos de los fármacos , Animales , Sitios de Unión/efectos de los fármacos , Fenómenos Biofísicos , Dolor Crónico/genética , Proteínas de Transporte de Glicina en la Membrana Plasmática/antagonistas & inhibidores , Proteínas de Transporte de Glicina en la Membrana Plasmática/química , Humanos , Lípidos/antagonistas & inhibidores , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/ultraestructura , Xenopus laevis
6.
Chemistry ; 28(28): e202200389, 2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35293643

RESUMEN

We report the synthesis of two [2]rotaxanes containing an interlocked three dimensional binding cavity formed from a pyridinium bis(amide) axle component containing two phenol donors, and an isophthalamide based macrocycle. In the competitive solvent mixture 1 : 1 CDCl3 : CD3 OD, one of the receptors exhibits a much higher selectivity preference for chloride than an analogous rotaxane without the hydroxy groups. X-ray crystal structures reveal the chloride anion guest encapsulated within the interlocked binding cavity, though not all of the hydrogen bond donors are utilised. Computational semi-empirical simulations indicate that secondary intermolecular interactions occur between the axle hydroxy hydrogen bond donors and the [2]rotaxane macrocycle components, contributing to a more preorganised binding pocket, which may be responsible for the observed enhanced selectivity.


Asunto(s)
Rotaxanos , Aniones/química , Cloruros/química , Halógenos , Enlace de Hidrógeno , Modelos Moleculares , Rotaxanos/química
7.
Org Biomol Chem ; 21(1): 132-139, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36453203

RESUMEN

Aryl-urea substituted fatty acids are protonophores and mitochondrial uncouplers that utilise a urea-based synthetic anion transport moiety to carry out the protonophoric cycle. Herein we show that replacement of the urea group with carbamate, a functional group not previously reported to possess anion transport activity, produces analogues that retain the activity of their urea counterparts. Thus, the aryl-carbamate substituted fatty acids uncouple oxidative phosphorylation and inhibit ATP production by collapsing the mitochondrial proton gradient. Proton transport proceeds via self-assembly of the deprotonated aryl-carbamates into membrane permeable dimeric species, formed by intermolecular binding of the carboxylate group to the carbamate moiety. These results highlight the anion transport capacity of the carbamate functional group.


Asunto(s)
Ácidos Grasos , Protones , Ácidos Grasos/metabolismo , Carbamatos/farmacología , Carbamatos/metabolismo , Mitocondrias/metabolismo , Fosforilación Oxidativa
8.
Nucleic Acids Res ; 48(10): 5766-5776, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32313953

RESUMEN

Aberrant KRAS signaling is a driver of many cancers and yet remains an elusive target for drug therapy. The nuclease hypersensitive element of the KRAS promoter has been reported to form secondary DNA structures called G-quadruplexes (G4s) which may play important roles in regulating KRAS expression, and has spurred interest in structural elucidation studies of the KRAS G-quadruplexes. Here, we report the first high-resolution crystal structure (1.6 Å) of a KRAS G-quadruplex as a 5'-head-to-head dimer with extensive poly-A π-stacking interactions observed across the dimer. Molecular dynamics simulations confirmed that the poly-A π-stacking interactions are also maintained in the G4 monomers. Docking and molecular dynamics simulations with two G4 ligands that display high stabilization of the KRAS G4 indicated the poly-A loop was a binding site for these ligands in addition to the 5'-G-tetrad. Given sequence and structural variability in the loop regions provide the opportunity for small-molecule targeting of specific G4s, we envisage this high-resolution crystal structure for the KRAS G-quadruplex will aid in the rational design of ligands to selectively target KRAS.


Asunto(s)
G-Cuádruplex , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas p21(ras)/genética , Cristalografía por Rayos X , ADN/química , Dimerización , Ligandos , Simulación de Dinámica Molecular , Mutación , Poli A/química , Agua/química
9.
J Chem Phys ; 154(9): 095101, 2021 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-33685172

RESUMEN

A coarse-grain model of the epithelial plasma membrane was developed from high-resolution lipidomic data and simulated using the MARTINI force field to characterize its biophysical properties. Plasmalogen lipids, Forssman glycosphingolipids, and hydroxylated Forssman glycosphingolipids and sphingomyelin were systematically added to determine their structural effects. Plasmalogen lipids have a minimal effect on the overall biophysical properties of the epithelial plasma membrane. In line with the hypothesized role of Forssman lipids in the epithelial apical membrane, the introduction of Forssman lipids initiates the formation of glycosphingolipid-rich nanoscale lipid domains, which also include phosphatidylethanolamine (PE), sphingomyelin (SM), and cholesterol (CHOL). This decreases the lateral diffusion in the extracellular leaflet, as well as the area per lipid of domain forming lipids, most notably PE. Finally, hydroxylation of the Forssman glycosphingolipids and sphingomyelin further modulates the lateral organization of the membrane. Through comparison to the previously studied average and neuronal plasma membranes, the impact of membrane lipid composition on membrane properties was characterized. Overall, this study furthers our understanding of the biophysical properties of complex membranes and the impact of lipid diversity in modulating membrane properties.


Asunto(s)
Membrana Celular/metabolismo , Células Epiteliales/citología , Plasmalógenos/metabolismo , Esfingolípidos/metabolismo , Difusión , Hidroxilación
10.
Biochemistry ; 59(33): 3010-3018, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32786397

RESUMEN

Cell membranes contain incredible diversity in the chemical structures of their individual lipid species and the ratios in which these lipids are combined to make membranes. Nevertheless, our current understanding of how each of these components affects the properties of the cell membrane remains elusive, in part due to the difficulties in studying the dynamics of membranes at high spatiotemporal resolution. In this work, we use coarse-grained molecular dynamics simulations to investigate how individual lipid species contribute to the biophysical properties of the neuronal plasma membrane. We progress through eight membranes of increasing chemical complexity, ranging from a simple POPC/CHOL membrane to a previously published neuronal plasma membrane [Ingólfsson, H. I., et al. (2017) Biophys. J. 113 (10), 2271-2280] containing 49 distinct lipid species. Our results show how subtle chemical changes can affect the properties of the membrane and highlight the lipid species that give the neuronal plasma membrane its unique biophysical properties. This work has potential far-reaching implications for furthering our understanding of cell membranes.


Asunto(s)
Membrana Celular/química , Fluidez de la Membrana/fisiología , Lípidos de la Membrana/química , Neuronas/ultraestructura , Animales , Fenómenos Biofísicos , Membrana Celular/fisiología , Colesterol/química , Colesterol/metabolismo , Humanos , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Lípidos de la Membrana/metabolismo , Lípidos de la Membrana/fisiología , Modelos Moleculares , Simulación de Dinámica Molecular , Neuronas/química , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/metabolismo , Fosfatidilinositoles/química , Fosfatidilinositoles/metabolismo , Fosfatidilserinas/química , Fosfatidilserinas/metabolismo , Esfingolípidos/química , Esfingolípidos/metabolismo , Esfingomielinas/química , Esfingomielinas/metabolismo
11.
J Struct Biol ; 211(1): 107513, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32339763

RESUMEN

The drug efflux pump P-glycoprotein (P-gp) displays a complex transport mechanism involving multiple drug binding sites and two centres for nucleotide hydrolysis. Elucidating the molecular mechanism of transport remains elusive and the availability of P-gp structures in distinct natural and ligand trapped conformations will accelerate our understanding. The present investigation sought to provide biochemical data to validate specific features of these structures; with particular focus on the transmembrane domain that provides the transport conduit. Hence our focus was on transmembrane helices six and twelve (TM6/TM12), which are believed to participate in drug binding, as they line the central transport conduit and provide a direct link to the catalytic centres. A series of P-gp mutants were generated with a single cysteine in both TM6 and TM12 to facilitate measurement of inter-helical distances using cross-linking and DEER strategies. Experimental results were compared to published structures per se and those refined by MD simulations. This analysis revealed that the refined inward-facing murine structure (4M1M) of P-gp provides a good representation of the proximity, topography and relative motions of TM6 and TM12 in reconstituted human P-gp.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/ultraestructura , Membrana Celular/ultraestructura , Lípidos de la Membrana/química , Conformación Proteica , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/química , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Animales , Sitios de Unión/genética , Membrana Celular/química , Membrana Celular/genética , Espectroscopía de Resonancia por Spin del Electrón , Humanos , Hidrólisis , Lípidos de la Membrana/genética , Ratones , Simulación de Dinámica Molecular , Nucleótidos/química , Nucleótidos/genética
12.
Proc Natl Acad Sci U S A ; 114(9): 2218-2223, 2017 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-28193899

RESUMEN

Multidrug-resistant (MDR) gram-negative bacteria have increased the prevalence of fatal sepsis in modern times. Colistin is a cationic antimicrobial peptide (CAMP) antibiotic that permeabilizes the bacterial outer membrane (OM) and has been used to treat these infections. The OM outer leaflet is comprised of endotoxin containing lipid A, which can be modified to increase resistance to CAMPs and prevent clearance by the innate immune response. One type of lipid A modification involves the addition of phosphoethanolamine to the 1 and 4' headgroup positions by phosphoethanolamine transferases. Previous structural work on a truncated form of this enzyme suggested that the full-length protein was required for correct lipid substrate binding and catalysis. We now report the crystal structure of a full-length lipid A phosphoethanolamine transferase from Neisseria meningitidis, determined to 2.75-Å resolution. The structure reveals a previously uncharacterized helical membrane domain and a periplasmic facing soluble domain. The domains are linked by a helix that runs along the membrane surface interacting with the phospholipid head groups. Two helices located in a periplasmic loop between two transmembrane helices contain conserved charged residues and are implicated in substrate binding. Intrinsic fluorescence, limited proteolysis, and molecular dynamics studies suggest the protein may sample different conformational states to enable the binding of two very different- sized lipid substrates. These results provide insights into the mechanism of endotoxin modification and will aid a structure-guided rational drug design approach to treating multidrug-resistant bacterial infections.


Asunto(s)
Proteínas Bacterianas/química , Etanolaminofosfotransferasa/química , Lípido A/química , Neisseria meningitidis/química , Periplasma/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Etanolaminofosfotransferasa/genética , Etanolaminofosfotransferasa/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Lípido A/metabolismo , Simulación de Dinámica Molecular , Neisseria meningitidis/enzimología , Periplasma/enzimología , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
13.
J Chem Inf Model ; 59(5): 2287-2298, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-30540465

RESUMEN

The human multidrug transporter P-glycoprotein (P-gp) transports over 200 chemically diverse substrates, influencing their bioavailability and tissue distribution. Pharmacological studies have identified both competitive and noncompetitive P-gp substrates, but neither the precise location of the substrate binding sites, nor the basis of competitive and noncompetitive interactions has been fully characterized. Here, potential of mean force (PMF) calculations are used to identify the transport-competent minimum free energy binding locations of five compounds, Hoechst 33342, Rhodamine 123, paclitaxel, tariquidar, and verapamil to P-gp. Unrestrained molecular dynamics simulations were also performed to confirm the substrates were stable in the energy wells determined using the PMF calculations. All compounds had energy minima within the P-gp transmembrane (TM) pore. For Hoechst 33342 and Rhodamine 123, a second minimum outside the TM pore was also identified. Based on this and previous studies of nicardipine and morphine [ Subramanian et al. J. Chem. Inf. Model. 2015 , 55 , 1202 ], a general scheme that accounts for the observed noncompetitive and competitive substrate interactions with P-gp is proposed.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/química , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Modelos Moleculares , Preparaciones Farmacéuticas/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/antagonistas & inhibidores , Sitios de Unión , Conformación Proteica
14.
Eur Biophys J ; 47(1): 59-67, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28620741

RESUMEN

E-cadherin is a transmembrane glycoprotein that facilitates inter-cellular adhesion in the epithelium. The ectodomain of the native structure is comprised of five repeated immunoglobulin-like domains. All E-cadherin crystal structures show the protein in one of three alternative conformations: a monomer, a strand-swapped trans homodimer and the so-called X-dimer, which is proposed to be a kinetic intermediate to forming the strand-swapped trans homodimer. However, previous studies have indicated that even once the trans strand-swapped dimer is formed, the complex is highly dynamic and the E-cadherin monomers may reorient relative to each other. Here, molecular dynamics simulations have been used to investigate the stability and conformational flexibility of the human E-cadherin trans strand-swapped dimer. In four independent, 100 ns simulations, the dimer moved away from the starting structure and converged to a previously unreported structure, which we call the Y-dimer. The Y-dimer was present for over 90% of the combined simulation time, suggesting that it represents a stable conformation of the E-cadherin dimer in solution. The Y-dimer conformation is stabilised by interactions present in both the trans strand-swapped dimer and X-dimer crystal structures, as well as additional interactions not found in any E-cadherin dimer crystal structures. The Y-dimer represents a previously unreported, stable conformation of the human E-cadherin trans strand-swapped dimer and suggests that the available crystal structures do not fully capture the conformations that the human E-cadherin trans homodimer adopts in solution.


Asunto(s)
Cadherinas/química , Multimerización de Proteína , Simulación de Dinámica Molecular , Estabilidad Proteica , Estructura Cuaternaria de Proteína , Soluciones
15.
Biochim Biophys Acta ; 1858(4): 776-82, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26724201

RESUMEN

The apparent activity of the multidrug transporter P-glycoprotein (P-gp) is enhanced by the presence of cholesterol. Whether this is due to the direct effect of cholesterol on the activity of P-gp, its effect on the local concentration of substrate in the membrane, or its effect on the rate of entry of the drug into the cell, is unknown. In this study, molecular dynamics simulation techniques coupled with potential of mean force calculations have been used to investigate the role of cholesterol in the movement of four P-gp substrates across a POPC bilayer in the presence or absence of 10% cholesterol. The simulations suggest that the presence of cholesterol lowers the free energy associated with entering the middle of the bilayer in a substrate-specific manner. These findings suggest that P-gp substrates may preferentially accumulate in cholesterol-rich regions of the membrane, which may explain its enhanced transport activity.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Membrana Celular/química , Colesterol/metabolismo , Resistencia a Múltiples Medicamentos , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/química , Membrana Celular/metabolismo , Colesterol/química , Colesterol/farmacología , Humanos , Simulación de Dinámica Molecular , Especificidad por Sustrato
16.
Biochemistry ; 55(49): 6908-6918, 2016 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-27951661

RESUMEN

A family of flavin/deazaflavin-dependent oxidoreductases (FDORs) from mycobacteria has been recently characterized and found to play a variety of catalytic roles, including the activation of prodrugs such as the candidate anti-tuberculosis drug pretomanid (PA-824). However, our understanding of the catalytic mechanism used by these enzymes is relatively limited. To address this, we have used a combination of quantum mechanics and molecular dynamics calculations to study the catalytic mechanism of the activation of pretomanid by the deazaflavin-dependent nitroreductase (Ddn) from Mycobacterium tuberculosis. The preferred pathway involves an initial hydride transfer step from the deprotonated cofactor (i.e., F420H-), with subsequent protonation, before a series of spontaneous intramolecular reactions to form the final reactive nitrogen species. The most likely proton source is a hydroxonium ion within the solvent accessible active site. Intriguingly, catalysis of the rate-determining hydride transfer step is aided by three tyrosine residues that form a hydrophobic barrier around the active site that, upon reaction, is then disrupted to allow increased water accessibility to facilitate the subsequent proton transfer step. The catalytic mechanism we propose is consistent with previous experimental observations of the Ddn enzyme and will inform the design of improved prodrugs in the future.


Asunto(s)
Oxidorreductasas/metabolismo , Catálisis , Interacciones Hidrofóbicas e Hidrofílicas
17.
J Biol Chem ; 290(40): 24308-25, 2015 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-26240152

RESUMEN

Many solute carrier 6 (SLC6) family transporters require ancillary subunits to modify their expression and activity. The main apical membrane neutral amino acid transporters in mouse intestine and kidney, B(0)AT1 and B(0)AT3, require the ancillary protein collectrin or ACE2 for plasma membrane expression. Expression and activity of SLC6 neurotransmitter transporters are modulated by interaction with syntaxin 1A. Utilizing monocarboxylate-B(0)AT1/3 fusion constructs, we discovered that collectrin is also necessary for B(0)AT1 and B(0)AT3 catalytic function. Syntaxin 1A and syntaxin 3 inhibit the membrane expression of B(0)AT1 by competing with collectrin for access. A mutagenesis screening approach identified residues on trans-membrane domains 1α, 5, and 7 on one face of B(0)AT3 as a key region involved in interaction with collectrin. Mutant analysis established residues that were involved in collectrin-dependent functions as follows: plasma membrane expression of B(0)AT3, catalytic activation, or both. These results identify a potential binding site for collectrin and other SLC6 ancillary proteins.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos/genética , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Animales , Sitios de Unión , Biotinilación , Células CHO , Catálisis , Cricetinae , Cricetulus , Drosophila melanogaster , Humanos , Glicoproteínas de Membrana/metabolismo , Ratones , Mutagénesis , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Qa-SNARE/metabolismo , Interferencia de ARN , Proteínas Recombinantes de Fusión/metabolismo , Especificidad por Sustrato , Sintaxina 1/metabolismo , Xenopus laevis
18.
Nat Chem Biol ; 10(1): 35-41, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24212134

RESUMEN

The relative stability of divalent first-row transition metal ion complexes, as defined by the Irving-Williams series, poses a fundamental chemical challenge for selectivity in bacterial metal ion acquisition. Here we show that although the substrate-binding protein of Streptococcus pneumoniae, PsaA, is finely attuned to bind its physiological substrate manganese, it can also bind a broad range of other divalent transition metal cations. By combining high-resolution structural data, metal-binding assays and mutational analyses, we show that the inability of open-state PsaA to satisfy the preferred coordination chemistry of manganese enables the protein to undergo the conformational changes required for cargo release to the Psa permease. This is specific for manganese ions, whereas zinc ions remain bound to PsaA. Collectively, these findings suggest a new ligand binding and release mechanism for PsaA and related substrate-binding proteins that facilitate specificity for divalent cations during competition from zinc ions, which are more abundant in biological systems.


Asunto(s)
Proteínas de Transporte de Membrana/metabolismo , Metales/metabolismo , Sitios de Unión , Cationes , Proteínas de Transporte de Membrana/química , Modelos Moleculares , Streptococcus pneumoniae/metabolismo
19.
Mol Microbiol ; 91(4): 834-51, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24428621

RESUMEN

Streptococcus pneumoniae is a globally significant human pathogen responsible for nearly 1 million deaths annually. Central to the ability of S. pneumoniae to colonize and mediate disease in humans is the acquisition of zinc from the host environment. Zinc uptake in S. pneumoniae occurs via the ATP-binding cassette transporter AdcCB, and, unusually, two zinc-binding proteins, AdcA and AdcAII. Studies have suggested that these two proteins are functionally redundant, although AdcA has remained uncharacterized by biochemical methods. Here we show that AdcA is a zinc-specific substrate-binding protein (SBP). By contrast with other zinc-binding SBPs, AdcA has two zinc-binding domains: a canonical amino-terminal cluster A-I zinc-binding domain and a carboxy-terminal zinc-binding domain, which has homology to the zinc-chaperone ZinT from Gram-negative organisms. Intriguingly, this latter feature is absent from AdcAII and suggests that the two zinc-binding SBPs of S. pneumoniae employ different modalities in zinc recruitment. We further show that AdcAII is reliant upon the polyhistidine triad proteins for zinc in vitro and in vivo. Collectively, our studies suggest that, despite the overlapping roles of the two SBPs in zinc acquisition, they may have unique mechanisms in zinc homeostasis and act in a complementary manner during host colonization.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Bacterianas/metabolismo , Homeostasis , Streptococcus pneumoniae/metabolismo , Zinc/metabolismo , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Unión Proteica , Estructura Terciaria de Proteína , Streptococcus pneumoniae/genética
20.
J Chem Inf Model ; 55(6): 1202-17, 2015 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-25938863

RESUMEN

The multidrug transporter P-glycoprotein (P-gp) is central to the development of multidrug resistance in cancer. While residues essential for transport and binding have been identified, the location, composition, and specificity of potential drug binding sites are uncertain. Here molecular dynamics simulations are used to calculate the free energy profile for the binding of morphine and nicardipine to P-gp. We show that morphine and nicardipine primarily interact with key residues implicated in binding and transport from mutational studies, binding at different but overlapping sites within the transmembrane pore. Their permeation pathways were distinct but involved overlapping sets of residues. The results indicate that the binding location and permeation pathways of morphine and nicardipine are not well separated and cannot be considered as unique. This has important implications for our understanding of substrate uptake and transport by P-gp. Our results are independent of the choice of starting structure and consistent with a range of experimental studies.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/química , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Biología Computacional/métodos , Morfina/metabolismo , Nicardipino/metabolismo , Sitios de Unión , Simulación de Dinámica Molecular , Unión Proteica , Estructura Secundaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA